• Title/Summary/Keyword: Temperature of aggregate

Search Result 361, Processing Time 0.028 seconds

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Variation of Flexural Strength of Warm-mix Asphalt Concretes Due to Differential Thermal Contraction at Low Temperatures (저온하에서 시차열 수축에 의한 WMA 콘크리트의 휨강도 변화)

  • Choi, Jung-Soon;Kim, Sung-Un;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-72
    • /
    • 2012
  • PURPOSES : Hot-mix asphalt(HMA) concretes show a trend of strength increase at low temperature due to binder stiffness increase, but strength decrease below a ceratin low temperature. This is due to the differential thermal contraction(DTC) which is induced by a significant difference in coefficients of thermal contraction between aggregate and asphalt which is coated around the aggregate. This DTC damage is well known to occur in HMA concrete, but is not yet investigated in warm-mix asphalt(WMA) concretes. METHODS : To evaluate DTC damage on WMA in this study, the flexural strength($S_f$) of WMA concretes, which were produced at $30{\sim}40^{\circ}C$ lower temperature, was evaluated in comparison with that of HMA at -5, -15 and $-25^{\circ}C$. RESULTS : Most of WMA and HMA mixtures showed flexural strength increase down to $-15^{\circ}C$ and decrease below $-15^{\circ}C$. this type of strength reduction below $-15^{\circ}C$ can e explained as the effect of differential thermal contraction that is a consequence of the large difference in coefficients of thermal contraction between aggregate and asphalt. the property reduction of WMA is similar the result of previous works dealt with HMA mixtures. CONCLUSIONS : Even though there is some differences by materials used, the WMA concretes showed a significantly lower DTC damage than HMA concrete at low temperature at ${\alpha}$=0.05 level.

Study on the High Temperature Properties of Fireproof Mortar Using Various Types of Fine Aggregate (잔골재 종류에 따른 내화피복용 모르타르의 고온 성상에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • High strength concrete has a structural advantage as well as superior usability and durability, so that its application in building is being steadily augmented. However, in the high temperature like in a fire, the high strength concrete has extreme danger named explosive spalling. It is known that the major cause of explosive spalling is water vapour pressure inside concrete. General solution for preventing concrete from spalling include applying fire protection coats to concrete in order to control the rising temperature of members in case of fire. The purpose of this study is to investigate the high temperature properties of fireproof mortar using organic fiber and various types of fine aggregate for fire protection covering material. The results showed that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. This causes the internal temperature to rise. As a results, it is found that a new fireproof mortar can be used in the fire protection covering material in high strength concrete.

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

Temperature Reduction of Concrete Pavement Using Glass Bead Materials

  • Pancar, Erhan Burak;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • In this study, different proportions of glass beads used for road marking were added into the concrete samples to reduce the temperature gradient through the concrete pavement thickness. It is well known that decreasing the temperature gradient reduces the risk of thermal cracking and increases the service life of concrete pavement. The extent of alkali-silica reaction (ASR) produced with partial replacement of fine aggregate by glass bead was investigated and compressive strength of concrete samples with different proportion of glass bead in their mix designs were measured in this study. Ideal results were obtained with less than 0.850 mm diameter size glass beads were used (19 % by total weight of aggregate) for C30/37 class concrete. Top and bottom surface temperatures of two different C30/37 strength class concrete slabs with and without glass beads were measured. It was identified that, using glass bead in concrete mix design, reduces the temperature differences between top and bottom surfaces of concrete pavement. The study presented herein provides important results on the necessity of regulating concrete road mix design specifications according to regions and climates to reduce the temperature gradient values which are very important in concrete road design.

A Study on the Engineering Properties of Concrete Using Cement Kiln Dust (킬른더스트를 사용한 콘크리트의 공학적 특성에 관한 연구)

  • 김기정;황인성;차천수;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.267-270
    • /
    • 2003
  • This study is intended to investigate the engineering properties of concrete, in which cement and fine aggregate are replaced with cement kiln dust(CKD), such as the properties of fresh concrete and hardened concrete and hydration heat history, for effective using method of CKD, a by-product produced in the process of making cement. According to the results, as the replacing ratio of CKD increases, slump and air content of concrete decreases remarkably due to an increase of viscosity and filling of the pores. As the properties of setting, initial and final setting time are shortened with an increase of the replacing ratio of CKD, and as the replacement of CKD for fine aggregate increases, setting time is shortened more greatly. Compressive strength increases due to filling of the pores and reduction of air content in comparison with plain concrete. When the replacement ratio of CKD for cement is 10% and 15%, peak temperature of hydration heat lowers slightly, but it goes up in the case of replacement of CKD for fine aggregate. Also, when cement and fine aggregate is replaced with CKD by 2.5% and 7.5% respectively(1C3S) in the case of replacement of CKD for cement and fine aggregate, it is highest.

  • PDF

Residual behavior of recycled aggregate concrete beam and column after elevated temperatures

  • Chen, Zongping;Zhou, Ji;Liang, Ying;Ye, Peihuan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.513-528
    • /
    • 2020
  • This paper presents the results of an experimental study on the residual behavior of reinforced recycled aggregate concrete (RRAC) beam-columns after exposure to elevated temperatures. Two parameters were considered in this test: (a) recycled coarse aggregate (RCA) replacement percentages (i.e. 0, 30, 50, 70 and 100%); (b) high temperatures (i.e. 20, 200, 400, 600, and 800℃). A total of 25 RRAC short columns and 32 RRAC beams were conducted and subjected to different high temperatures for 1 h. After cooling down to ambient temperature, the following basic physical and mechanical properties were then tested and discussed: (a) surface change and mass loss ratio; (b) strength of recycled aggregate concrete (RAC) and steel subjected to elevated temperatures; (c) bearing capacity of beam-columns; (d) load-deformation curve. According to the test results, the law of performance degradation of RRAC beam-columns after exposure to high temperatures is analyzed. Finally, introducing the influence coefficient of RCA replacement percentage and high temperatures, respectively, to correct the calculation formulas of bearing capacity of beam-columns in Chinese Standard, and then the residual bearing capacity of RRAC beam-columns subjected elevated temperatures is calculated according to the modified formulas, the calculated results are in good agreement with the experimental results.

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.

Experimental Study for Utilizing of Recycling Fine Aggregate as Precast Concrete Aggregate (재생(再生)잔골재(骨材)를 프리캐스트 콘크리트용(用) 골재(骨材)로 활용(活用)하기 위한 실험적(實驗的) 연구(硏究))

  • Moon, Dae-Joong;Moon, Han-Young;Kim, Yang-Bae;Lim, Nam-Woong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.24-31
    • /
    • 2006
  • The duality of recycled fine aggregate (RS) which was produced at the waste concrete crushing was investigated. The compressive strength, flexural strength and absorption of mortar utilized with RS were examined. It was evaluated on the application of RS as precast concrete aggregate. The density and absorption of RS were $2.31g/cm^3$ and 8.07% respectively, the quality of RS was satisfied with the criterion of KS F 2573 type 2. The maximum 28days compressive strength of mortar mixed with blended cement MRS1, MRS2 and MRS3 were developed with 15.8, 27.4 and 48.7MPa respectively, in condition to curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. When blended cement MRS1 and MRS2 were used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 35.0%. When blended cement MRS3 was used, the maximum flexural strength of mortar was developed at curing temperature $40^{\circ}C$ and water-cement ratio 37.5%. The absorption of mortar mixed with blended cement MRS1, MRS2 and MRS3 were indicated the range of $8.3{\sim}7.3%,\;6.5{\sim}8.5%$ and $3.5{\sim}6%$ respectively. Therefore, when the ratio of blended cement and RS is appropriately centre]led, it would be expected that MRS1, MRS2 and MRS3 will be able to apply the variable low strength, medium strength and high strength precaste concrete.

An Experimental Study on the Waste Polyethylene Aggregate for Construction Materials (폐비닐 골재의 기본특성에 관한 연구)

  • Kim, Young-Chin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.5-16
    • /
    • 2003
  • The aggregate out of waste polyethylene was made in order to recycle waste polyethylene wasted in the country side. Many physical and mechanical experiments which include leaching test, specific gravity test, compaction test, LA abrasion test, large-scaled shear test, and permeability test were performed for the waste polyethylene aggregate. The thermal conductivity test, unfrozen water content test and frost heave test were also performed. The temperature distribution for both gravels and waste polyethylene aggregate, which were constructed in the frost heave layer in the field, was measured in winter season of continuous 2 years and compared.

  • PDF