• Title/Summary/Keyword: Temperature of Concrete

Search Result 2,498, Processing Time 0.027 seconds

Mechanical Properties of Concrete with Different Curing Temperature (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;조명석;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.117-124
    • /
    • 1997
  • In this study, mechanical properties of type V cement concrete with different curing temperature were investigated. The tests for mechancial properties, i.e., compressive strength and modulus of elasticity, were carried out on two kinds of type V cement concrete mixes. concrete cylinders cured at 10, 23, 35 and 50℃ were tested at 1, 3, 7 and 8 days. The 'rate constant model' was used to described the combined effects of time and temperature on compressive strength development. Test results show that concrete subjected to high temperature at early age attains greater strength than concrete to low temperature but eventually attains lower later-age strength than that. With type V cement concrete, the linear and Arrhenius rate constant models both accurately describe the development of relative strength as afunction of the equivalent age.

  • PDF

Hydration Heat Analysis of Coping With Ambient and Placing Concrete Temperature (교각 코핑부의 외기온도와 타설온도에 따른 수화열 해석)

  • Yang, Joo-Kyoung
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.99-104
    • /
    • 2008
  • The thermal stresses due to hydration heat in massive concrete structures are affected by ambient temperature and placing concrete temperature. It is needed to predict the thermal stresses considering ambient temperature and placing concrete temperature. In this study, hydration heat analyses of coping were carried out. After the maximum tensile stress was occurred at 2,75 days the crack index was increased. Therefore the possibility of crack occurrence was rare. The possibility of crack occurrence can be reduced by placing concrete temperature drop. Therefore some method to drop the placing concrete temperature may be effective to reduce the possibility of crack occurrence.

  • PDF

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

Transient Strain of Concrete at High Temperature (고온에서의 콘크리트 비정상상태 변형률)

  • Park, Chan-Kyu;Kim, Gyu-Yong;Lee, Seung-Hoon;Park, Ju-Heon;Kim, Young-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • An experimental investigation was carried out to evaluate the transient strain of concrete at high temperature. Two level of W/B ratio were selected as 46% and 32%. Four level of preload were adopted as 0, 15, 30, 45% of compressive strength. The entire temperature range was between room temperature and $700^{\circ}C$. Based on the test results, transient strain of concrete at high temperature was affected by the compressive strength as well as the preload level.

  • PDF

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Analysis of RC beams under high temperature (고온에서의 RC보 거동해석)

  • 홍성걸;김형도;서연주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • This study is performed to analyze of reinforced concrete beams under fire and to calculate remaining strength. The analysis is based on the assumption that plane section remains plane after bending due to load and non-linear temperature increases. Finite difference method is used to find temperature field in a section. The residual strength is attained considering the effect of temperature rise on the mechanical properties of concrete, self-equilibrium stress and reduced section. Further research in much needed on the material models of concrete since it governs temperature distribution and theoretical results.

  • PDF

Effects of Re-vibration and Curing Temperature on the Physical Properties of Latex-Modified Concrete (진동가력과 양생온도가 라텍스개질 콘크리트에 미치는 영향)

  • 정원경;홍창우;이주형;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.799-804
    • /
    • 2003
  • The purpose of this study was to investigate the effects of re-vibration and curing temperature onto the physical properties of latex-modified concrete with ordinary cement and rapid-setting cement, and thus to provide a guide line of re-vibration and curing conditions for good quality controls. The main experimental variables included two cement types(ordinary portland cement, rapid-setting cement), curing Temperature($10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$), re-vibration methods(continued, intermittent), and re-vibration times(initial setting, one day after mixing). The experimental results showed that the re-vibration affected little to the mechanical properties of LMC and RSLMC, while, the curing temperature a quite some. The early strength development was the highest at $20^{\circ}C$ curing temperature, and decreased at higher temperature. The permeability of concrete generally decreased with curing time. The rapid chloride permeability was a function of time and temperature. The chloride permeability of RSLMC was so small and negligible.

  • PDF

The Reduction of Temperature Rise in High Strength Concrete (고강도용 콘크리트의 온도상승 저감대책)

  • 문한영;문대중;하상욱;서정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.133-139
    • /
    • 1996
  • As construction technology advances, most of civil engineering structures are becoming larger and taller. Therefore, high strength concrete is necessary for them. For high strength concrete, it needs a large amount of unit cement content and low water-cement ratio inevitably, so that a large amount of heat occurs in concrete. The thermal cracks make the durability and quality of concrete structures become worse, result from temperature rise and thermal stress due to heat of hydration. In this study, the proposal of using ground granulated blast furnace slag, fly ash and chemical admixtures was investigated to decrease the temperature rise of concrete.

  • PDF