• 제목/요약/키워드: Temperature Sensor Array

검색결과 70건 처리시간 0.029초

미소구조물의 표면온도 측정 및 제어를 위한 다이오드 온도 센서 어레이 설계 (Diode Temperature Sensor Array for Measuring and Controlling Micro Scale Surface Temperature)

  • 한일영;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1231-1235
    • /
    • 2004
  • The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, Thermal finger print, Micro PCR(polymer chain reaction), ${\mu}TAS$ and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 ${\times}$ 32 array of diodes (1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm ${\times}$ 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters ($1K{\Omega}$) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  • PDF

손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정 (Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature)

  • 전민호;전영주;김영민
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

곡면 유리 표면 위에서 박막 측온저항체 온도센서 어레이 제작 및 성능 평가 (Fabrication and Performance Evaluation of Thin Film RTD Temperature Sensor Array on a Curved Glass Surface)

  • 안철희;김형훈;박상후;손창민;고정상
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.34-39
    • /
    • 2011
  • This paper presents a novel direct fabrication method of the thin metal film RTD temperature sensor array on an arbitrary curved surface by using MEMS technology to measure a distributed temperature field up to $300^{\circ}C$ without disturbing a fluid flow. In order to overcome the difficulty in the three dimensional photography of sensor patterning, the UV pre-irradiated photosensitive dry film resist technology has been developed newly. This method was applied to the fabrication of the temperature sensor array on a glass tube, which is arranged parallel and transverse to a main flow. Gold was used as a temperature sensing material. The resistance change was measured in a thermally controlled oven by increasing the environmental temperature. The linear increase in resistance change and a constant slope were obtained. Also, the sensitivity of each RTD temperature sensor was evaluated.

온도장 가시화를 위한 연성회로기판을 이용한 온도센서 어레이 제작 및 성능평가 (Fabrication and Performance Evaluation of Temperature Sensor Matrix Using a Flexible Printed Circuit Board for the Visualization of Temperature Field)

  • 안철희;김형훈;차제명;권봉현;하만영;박상후;정지환;김귀순;조종래;손창민;이정호;고정상
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.17-21
    • /
    • 2010
  • This paper presents the fabrication and performance measurement of a temperature sensor array on a flexible substrate attachable to a curved surface using MEMS technology. Specifically, the fabrication uses the well-developed printed circuit board fabrication technology for complex electrode definition. The temperature sensor array are lifted off with a $10{\times}10$ matrix in a $50\;mm{\times}50\;mm$ to visualize temperature distribution. Copper is used as temperature sensing material to measure the change in resistances with temperature increase. In a thermal oven with temperature control, the temperature sensor array is Characterized. The constant slope of resistance change is obtained and temperature distribution is measured from the relationship between resistance and temperature.

a-IGZO TFT 기반 OLED 디스플레이 화소에 내장되는 OLED 열화 보상용 온도 센서의 개발 (Development of a Temperature Sensor for OLED Degradation Compensation Embedded in a-IGZO TFT-based OLED Display Pixel)

  • 문승재;김승균;최세용;이장후;이종모;배병성
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.56-61
    • /
    • 2024
  • The quality of the display can be managed by effectively managing the temperature generated by the panel during use. Conventional display panels rely on an external reference resistor for temperature monitoring. However, this approach is easily affected by external factors such as temperature variations from the driving circuit and chips. These variations reduce reliability, causing complicated mounting owing to the external chip, and cannot monitor the individual pixel temperatures. However, this issue can be simply and efficiently addressed by integrating temperature sensors during the display panel manufacturing process. In this study, we fabricated and analyzed a temperature sensor integrated into an a-IGZO (amorphous indium-gallium-zinc-oxide) TFT array that was to precisely monitor temperature and prevent the deterioration of OLED display pixels. The temperature sensor was positioned on top of the oxide TFT. Simultaneously, it worked as a light shield layer, contributing to the reliability of the oxide. The characteristics of the array with integrated temperature sensors were measured and analyzed while adjusting the temperature in real-time. By integrating a temperature sensor into the TFT array, monitoring the temperature of the display became easier and more accurate. This study could contribute to managing the lifetime of the display.

UV 임프린팅을 이용한 이미지 센서용 웨이퍼 스케일 마이크로렌즈 어레이 설계 및 제작 (Design and fabrication of wafer scale microlens array for image sensor using UV-imprinting)

  • 김호관;김석민;임지석;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.100-103
    • /
    • 2007
  • A microlens array has been required to improve light conversion efficiency in image sensors. A microlens array can be usually fabricated by photoresist reflow, hot-embossing, micro injection molding, and UV-imprinting. Among these processes, a UV-imprinting, which is operated at room temperature with relatively low applied pressure, can be a desirable process to integrate microlens array on image sensors, because this process provides the components with low thermal expansion, enhanced stability, and low birefringence, furthermore, it is more suitable for mass production of high quality microlens array. In this study, to analyze the optical properties of the wafer scale microlens array integrated image sensor, another wafer scale simulated image sensor chip array was designed and fabricated. An aspherical square microlens was designed and integrated on a simulated image sensor chip array using a UV-imprinting process. Finally, the optical performances were measured and analyzed.

  • PDF

Quantifiable and feasible estrus detection using the ultrasonic sensor array and digital infrared thermography

  • Lee, Ji Hwan;Lee, Dong Hoon;Yun, Won;Oh, Han Jin;An, Ji Seon;Kim, Young Gwang;Kim, Gok Mi;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • 제61권3호
    • /
    • pp.163-169
    • /
    • 2019
  • Detection of estrus is an essential factor as a method of successful breeding in the sow. As increasing the adaption of the information and communication technology (ICT) into swine industry, this study focuses on a possibility and quantification of standing time, vulva and body temperature as methods of estrus detection, comparing each time and temperature in estrus and non-estrus period, and analyzing each success rate of new and existing methods. Ultrasonic sensor array and digital infrared thermography were used to evaluate whether new methods such as standing time and number, and vulva and skin temperature can be replaced, or these methods can be quantifiable in estrus period. Ultrasonic sensor array was installed beside the stall and digital infrared thermography was placed in the rear of sow to collect the dates of sow in estrus and non-estrus period. This study showed total standing time, number and number over 10 minutes, and vulva temperature of the sow in estrus period were increased (p < 0.05) compared with those of sow in non-estrus period, respectively. Detection of estrus using standing time and vulva temperature tended (p = 0.06) to increase the success rate when artificial insemination (AI) was performed. In conclusion, standing time and vulva temperature increased when estrus happened. Success rate of AI of sow using these methods showed an increasing trend. Therefore, existing method using the naked eye can be replaced to new method such as vulvar temperature and standing time when detecting the estrus.

단일모드 광섬유의 간섭계 센서를 이용한 온도측정 (Temperature Measurement Using Single-Mode Fiber Interferometric Sensor)

  • 김덕수;이상호
    • 대한전자공학회논문지
    • /
    • 제22권2호
    • /
    • pp.1-5
    • /
    • 1985
  • 본 연구에서는 단일모드 광섬유에서의 온도에 의한 위상변조 현상을 분석하고 단일모드 광섬유 간섭계를 이용한 온도센서를 설계. 제작하여 그 온도특성을 조사하였다. 설계한 fiber-optic온도센서는 Mach-Zehnder 간섭계를 이용한 위상감지형 고감도 센서로서 온도변화는 간섭무의의 이동으로써 측정되어졌다. 간섭계에 의한 측정에서 중요한 문제중의 하나는 온도분만 아니라 모든 피측정 물리량의 변화방향에 따른 간섭무의의 이동갯수와 이동방향을 동시에 측정하는 것이다. 이를 위해 다중모드 광섬유를 이용한 배열 검출기를 제작하여 매우 간편하게 간섭무늬의 이동갯수와 이동방향을 측정하였다.

  • PDF

An Array-Based Sensor for Seafood Freshness Assessment

  • Gonzalez-Martin, Anuncia;Lewis, Brian;Raducanu, Marius;Kim, Jin-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3084-3092
    • /
    • 2010
  • This paper describes the development of an automated, hand-held sensor for the fast assessment of seafood freshness. The sensor developed here combined: an array-based chemical sensor, composed of incrementally different conducting polymer elements deposited on a small chip; a highly sensitive, custom-made electronics for the detection of very small signal changes; precise temperature control of the sensor chamber; and an on-board microcontroller for data collection, storage, automation, and analysis. The instrument was used to successfully test seafood samples with different degree of freshness and spoilage. A linear relationship between microbiological count and e-Nose signal for three different fish fillet was developed. Once the linear relationship is included into the hand-held unit software, the e-Nose signal can be used for assessment of seafood freshness without performing the microbiological count technique.

SnO2 Hollow Hemisphere Array for Methane Gas Sensing

  • Hieu, Nguyen Minh;Vuong, Nguyen Minh;Kim, Dojin;Choi, Byung Il;Kim, Myungbae
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.451-457
    • /
    • 2014
  • We developed a high-performance methane gas sensor based on a $SnO_2$ hollow hemisphere array structure of nano-thickness. The sensor structures were fabricated by sputter deposition of Sn metal over an array of polystyrene spheres distributed on a planar substrate, followed by an oxidation process to oxidize the Sn to $SnO_2$ while removing the polystyrene template cores. The surface morphology and structural properties were examined by scanning electron microscopy. An optimization of the structure for methane sensing was also carried out. The effects of oxidation temperature, film thickness, gold doping, and morphology were examined. An impressive response of ~220% was observed for a 200 ppm concentration of $CH_4$ gas at an operating temperature of $400^{\circ}C$ for a sample fabricated by 30 sec sputtering of Sn, and oxidation at $800^{\circ}C$ for 2 hr in air. This high response was enabled by the open structure of the hemisphere array thin films.