• Title/Summary/Keyword: Temperature Error Compensation

Search Result 101, Processing Time 0.031 seconds

Development of Three D.O.F Alignment Stage for Vacuum Environment (진공용 3자유도 얼라인먼트 스테이지 개발)

  • Han, Sang-Jin;Park, Jong-Ho;Park, Hui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.138-147
    • /
    • 2001
  • Alignment systems are frequently used under various semiconductor manufacturing environment. Particularly in PDP(Plasma Display Panel) manufacturing process, the alignment system is applied to the combining and sealing processes of the upper and lower glass panels of PDP, where these processes are performed in the vacuum chamber of high vacuum and high temperature. In this paper, the XYΘ-alignment stage is developed to align PDP panels. Because of high vacuum and high temperature environment, the alignment chamber has been designed to isolate the inner part of the alignment chamber from the outer environment of high vacuum and high temperature, in which every part of the alignment stage is inserted. As it is difficult to attach feedback sensors to the alignment stage in the alignment chamber, the alignment stage is implemented with the open loop algorithm, where the parallel link structure has been designed using step-motors and ball-screws for structural simplicity. The kinematic analysis is performed to drive the parallel link structure, based on the experiments of actuation-compensation of the alignment stage. For the error compensation, the hyperpatch model has been used to model the errors. From the experiments, the positional accuracy of the alignment stage can be improved significantly.

  • PDF

Real-time Estimation and Compensation of Thermal Error for the Machine Origin of Machine Tools (공작기계 원점 열변형오차의 실시간 규명 및 보상제어)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.148-153
    • /
    • 1998
  • In order to control thermal deformation of machine origin of machine tools due to internal and external heat sources, the real-time compensation system has been developed. First, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining center through the measurement of deformation data and temperature data of specific points on the machine tool. Thermocouples and gap sensors are used respectively for measurement. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Secondly, work origin shift method were developed by implementing digital I/O interface board between CNC controller and IBM-PC. The work origin shift method is to shift the work origin by the compensation amounts which is calculated by pre-established GMDH model. From the experimental result, thermal deformation of machine origin was reduced to below $\pm$5${\mu}{\textrm}{m}$.

  • PDF

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

Analysis and compensation of positioning error for aerostatic stage (공기정합 스테이지의 위치결정오차 분석 및 보정)

  • 황주호;박천홍;이찬흥;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Kim, Min-Su;Ahn, Joon-Tae;Kim, Jong-Bae;Ju, Jung-Jin;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.312-318
    • /
    • 2005
  • Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

  • PDF

Estimation of GPS Holdover Performance with Ladder Algorithm Used for an UFIR Filter (UFIR 필터 Ladder 알고리즘 이용 GPS Holdover 성능 추정)

  • Lee, Young-kyu;Yang, Sung-hoon;Lee, Chang-bok;Heo, Moon-beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, we described the simulation results of the phase offset performance of a clock in holdover mode which was normally operated in GPS Disciplined Oscillator (GPSDO). In the TIE model, we included the time error term caused by environmental temperature variation because one of the most important parameters of clock phase error is the frequency offset and drift caused by the variation of temperature. For the simulation, we employed Maximum Time Interval Error (MTIE) for the performance evaluation when the frequency offset and drift are estimated by using an Unbiased Finite Impulse Response (UFIR) filter with ladder algorithm. We assumed that the noise in the GPS measurement is white Gaussian with zero mean and 1 ns standard deviation, and temperature linearly varies with a slope of $1{^{\circ}C}$ per hour. From the simulation results, the followings were observed. First, with the estimation error of temperature of less than 3 % and the temperature compensation period of less than 900 seconds, the requirement of CDMA2000 phase synchronization under 10 us could be achieved for more than 40,000 seconds holdover time if we employ an OCXO (Oven Controlled Crystal Oscillator) clock. Second, in order to achieve the requirement of LTE-TDD under 1.5 us for more than 10,000 seconds holdover time, below 3 % estimation error and 500 seconds should be retained if a Rubidium clock is adopted.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

Indirect Kalman Filter based Sensor Fusion for Error Compensation of Low-Cost Inertial Sensors and Its Application to Attitude and Position Determination of Small Flying robot (저가 관성센서의 오차보상을 위한 간접형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치결정)

  • Park, Mun-Soo;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.637-648
    • /
    • 2007
  • This paper presents a sensor fusion method based on indirect Kalman filter(IKF) for error compensation of low-cost inertial sensors and its application to the determination of attitude and position of small flying robots. First, the analysis of the measurement error characteristics to zero input is performed, focusing on the bias due to the temperature variation, to derive a simple nonlinear bias model of low-cost inertial sensors. Moreover, from the experimental results that the coefficients of this bias model possess non-deterministic (stochastic) uncertainties, the bias of low-cost inertial sensors is characterized as consisting of both deterministic and stochastic bias terms. Then, IKF is derived to improve long term stability dominated by the stochastic bias error, fusing low-cost inertial sensor measurements compensated by the deterministic bias model with non-inertial sensor measurement. In addition, in case of using intermittent non-inertial sensor measurements due to the unreliable data link, the upper and lower bounds of the state estimation error covariance matrix of discrete-time IKF are analyzed by solving stochastic algebraic Riccati equation and it is shown that they are dependant on the throughput of the data link and sampling period. To evaluate the performance of proposed method, experimental results of IKF for the attitude determination of a small flying robot are presented in comparison with that of extended Kaman filter which compensates only deterministic bias error model.

High Precision Solenoid Type Nuclear Reactor Control Rod Position Indicator (고정밀도 솔레노이드 방식의 원자로 제어봉 위치지시기)

  • Baek, Min-Ho;Hong, Hoon-Bin;Park, Hee-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1848-1853
    • /
    • 2016
  • Control Rod Position Indicator in nuclear reactor vessel has developed for small reactor in Korea. Because of severe environment in reactor vessel, target of this study is to develop the suitable position indicator. In this study, solenoid type position indicator made of Mineral Insulated Cable(MI Cable) was introduced to adapt in severe environment. And inductance of the solenoid was used to indicate the rod position for high precision. But problem of this concept is that a linear slope of inductance is changed by temperature effect. To resolve this problem, two sensing coils were introduced for temperature compensation. A role of the sensing coil is to make reference linear equation about certain temperature. To confirm this concept, also, inductance of solenoid and sensing coils were measured at room and high temperature (${\sim}300^{\circ}C$). The results of measurement show that the position error of sensing coil between room and high temperature was about 2%. But it was identified that this error was resulted from insufficient test environment (temperature error between solenoid and sensing coils was about 2% at high temperature condition). Therefore, solenoid type position indicator shows that it is very suitable in reactor vessel as a high precision rod position indicator.

Development of the Calibration Algorithm of 3 Axis Vector Sensor Using Ellipsoid (타원체를 이용한 3축 센서의 실시간 보정 알고리듬 개발)

  • Hwang, Jung Moon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.643-651
    • /
    • 2015
  • Multi-axis magnetic and accelerometer sensor are widely used in consumer product such as smart phones. The vector output of multi-axis sensors have errors on each axis such as offset error, scale error, non-orthogonality. These errors cause many problems on the performance of the applications. In this paper, we designed the effective inline compensation algorithm for calibrating of 3 axis sensors using ellipsoid for mass production of multi-axis sensors. The outputs with those kinds of errors can be modeled by ellipsoid, and the proposed algorithm makes sequential mappings of the virtual ellipsoid to perfect sphere which is calibrated function of the sensor on three-dimensional space. The proposed calibrating process composed of four main stages and is very straightforward and effective. In addition, another imperfection of the sensor such as the drift from temperature can be easily inserted in each mapping stage. Numerical simulation and experimental results shows great performance of the proposed compensation algorithm.