• Title/Summary/Keyword: Temperature Cracking

Search Result 612, Processing Time 0.031 seconds

Plastic and Drying Shrinkage Cracking Reduction by the Bubble Sheet Curing (버블시트 피복양생법에 의한 소성 및 건조수축 균열저감)

  • Lee, Joung-Gyo;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.211-217
    • /
    • 2016
  • In this research, the performance of surface covering technique using a white-colored bubble sheet on reducing the cracking due to the plastic, and drying shrinkages for high rise building construction were evaluated by comparing the exposed surface without any surface treatment. From the results of the experiment conducted during fall season, desired results of decreased numbers, length, maximum width, and area of cracking were obtained without a significant difference on heat of hydration and cumulative temperature. Therefore, it is considered that the surface covering technique using bubble sheet is an appropriate method for preventing plastic and drying shrinkage cracking at fall season concrete construction.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Preparation and Characterization of Molecular Sieving Carbon by Methane and Benzene Cracking over Activated Carbon Spheres

  • Joshi, Harish Chandra;Kumar, Rajesh;Singh, Rohitashaw Kumar;Lal, Darshan
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Molecular sieving carbon (MSC) for separating $O_2-N_2$ and $CO_2-CH_4$ has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for $O_2-N_2$ and $CO_2-CH_4$ pair of gases was assessed by the kinetic adsorption of the corresponding gases at $25^{\circ}C$. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for $CO_2-CH_4$ and $O_2-N_2$ separation was obtained through benzene cracking on ACS with benzene entrantment of $0.40{\times}10^{-4}\;g/ml$ at cracking temperature of $725^{\circ}C$ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for $O_2-N_2$ and 8.00:1.00 for $CO_2-CH_4$ pair of gases respectively.

Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header (보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

Characteristics of the Newly Developed Rain Shelter for Grapevine and Growth of 'Campbell Early' (신개발 포도 비가림 시설의 특성과 '캠벌얼리'의 생육)

  • Lee, Yun Sang;Kim, Seung Deok;Lee, Seok Ho;Hong, Seong Taek;Lee, Jae Wung;Hong, Eui Yon;Kim, Dae Il
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.252-257
    • /
    • 2015
  • Fruit cracking and vine leaf spot of grapes tend to occur when the plants were directly exposed to rain under outdoor culture. Rain shelter facility can be an alternative method to prevent the cracking and disease of grape, but it also has some limitations in practical usages. We designed rain shelter facility which can completely shut out the rain and ventilate naturally, and it was upgraded to meet the standards of disaster prevention against snow and wind load. The newly developed rain shelter has two-story roof structure, and the $2^{nd}$ floor roof was equipped over $1^{st}$ floor roof at a distance of 40cm. For natural ventilation and water proof, the upper roof protruded about 50cm from the ridge of a $1^{st}$ floor roof. The various tests were carried to examine such as grape quality, brown spot and fruit cracking of Campbell Early under the conventional and the newly developed rain shelter facility which was built about $100{\ss}{\check{S}}$. In comparison of temperature between the conventional and the newly developed rain shelter facility when outside temperature was more than $34^{\circ}C$, the inside temperature was recorded as $40.7^{\circ}C$ and $37.4^{\circ}C$, respectively. There was no significant difference between the two facilities when outside was below $32^{\circ}C$ The quality such as soluble solids and marketable fruit was increased, and fruit cracking of grapes and vine leaf spot also drastically diminished in the newly developed rain shelter.

Reducing Thermal Cracking of Mat-foundation Mass Concrete Applying Different Mix Designs for Upper and Lower Placement Lifts (상하부 배합을 달리함에 의한 기초 매트 매스콘크리트의 수화열 균열저감)

  • Han, Cheon-Gu;Kim, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this research, considering the practical conditions at field, thermal cracking reducing method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, before field applications, the mix designs were obtained from the theoretical analysis obtained by MIDAS GEN for upper lift was OPC to FA of 85 to 15, and for lower lift was OPC to FA to BS of 50 : 20 : 30. Based on this mix design, the actual concrete for field was determined and all concrete properties were reached within the predicted range. Especially, the temperature properties of mass concrete at core was approximately $39^{\circ}C$ of temperature difference for low-heat mix design, while approximately $54^{\circ}C$ was shown for normal mix design currently used. Additionally, in the case of cracking index, the low heat mix design showed about 1.4 of relatively high value while the normal mix design showed 1.0. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking.

A Study on the High-Temperature Strain Measurement of Perfectly Flat CRT (완전평면 브라운관의 고온 변형률 측정에 관한 연구)

  • Kang, Dae-Jin;Kim, Kug-Weon;Han, Eung-Kyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.23-27
    • /
    • 1999
  • The measurement of thr high-temperature strains is one of the challenging subjects in mechanical engineering. For the precise measurement, proper high-temperature strain gauge, cement and skilled technique are needed. In this paper, a high-temperature strain measurement is performed for the perfectly flat CRT. As this CRT is structurally very weak, cracking of the panel frequently occurs during the heat cycle in the furnace. From the measured strain variations of the panel with tension shadow mask, the crack behavior can be explained.

  • PDF