• Title/Summary/Keyword: Technical error

Search Result 462, Processing Time 0.032 seconds

Position Accuracy Error Analysis in 2 Phase 8 Pole HB Type LPM (2상 8극 HB형 LPM의 위치오차 해석)

  • Kim, Sung-Hun;Lee, Eun-Woong;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.38-41
    • /
    • 1997
  • As the LPM is used for position accuracy decision device it is required that both the reason of posion error and the definition of position itself should be cleared. In this study, the precision of the position decision of LPM is affected by the geometrical shape such as tooth shape or processing accuracy. By using the analysis of magnetic circuit, we calculated the permeance come up with the gap. Once the thrust force has been obtained, the permeance due to the mechanical error of the pole pitch and the tooth pitch becomes the error of thrust force. We confirmed as well that it is being affected by the difference due to the variation of the airgap permeance.

  • PDF

Symbol Error Rate and Diversity Analysis of Receive MRC with Signal Space Diversity (신호공간 다이버시티 기법이 적용된 시스템에서 최대비 합성 수신의 이득 분석)

  • Jeon, Sung-Ho;Kyung, Il-Soo;Kim, Man-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.35-38
    • /
    • 2009
  • 본 논문에서는 신호 공간 다이버시티 (Signal Space Diversity) 기법이 적용된 시스템에서 최대비 합성 (Maximal Ratio Combining) 수신시 성능 이득에 대해서 분석하였다. 먼저 심볼 오류율(Symbol Error Rate)을 수학적으로 유도하였다. 유도된 공식으로부터 상한(Upper Bound) 분석을 통해 공간 신호 다이버시티 기법이 결합될 경우 기존 대비 2배, 즉 '$2{\times}$수신안테나수' 만큼의 다이버시티 이득을 가짐을 증명하였다. 그리고 모의실험 결과와 유도된 공식 결과 값이 서로 일치함을 보여 정확성을 입증하였으며, 유도된 공식을 기반으로 신호 대 잡음비(SNR; Signal-to-Noise Ratio), 수신 안테나 개수 등 주어진 시스템 변수에 따른 최적 회전 각도를 정확히 도출할 수 있음을 보였다.

  • PDF

A Review on ISO Standards Applicable for a Human Error Tolerant Control Center Design (제어실의 인적오류 예방에 적용 가능한 ISO 표준 검토)

  • Lee, Dhong-Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.161-168
    • /
    • 2011
  • Objective: The aim of this study is to review the ISO(the International Organization for Standardization) standards recommendations on a human error tolerant control room design. Background: ISO TC(Technical Committee) 159 published a variety of international standards on design of mental and physical work, design of displays and controls, and workstation layout design. A proper edition of these standards can be a good resource for a human error tolerant control center design guidelines. Method: Recommendations of ISO TC 159 standards were grouped into arrangement of control suite, layout of control room, layout and dimensions of workstations, design of displays and controls, environmental design, alarm, automation, management system design, procedure and training. Results: It was found that some standards on the design of supervisory control and data acquisition(SCADA), alarm, automation, layout, workload management, and environment can be used for human error prevention guidelines in the control center design. Conclusion: ISO TC 159 standards were not sufficient to cover all the ergonomics area of control center design. Application: Designers can have technical aids from these ISO standards to improve ergonomic performance of their control center.

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

Two Dimensional Orthogonal Variable Spreading Codes For Jacket Matrices (재킷행렬에서의 2차원 직교가변 확산코드)

  • Kang, Hark-Su;Mun, Myong-Ryung;Oh, Seung-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.173-175
    • /
    • 2005
  • Two-dimensional orthogonal variable spreading codes are presented for multiplexing of forward link in direct sequence code division multiple access (DS-CDMA) multiple antennas system And the results of code generation and simulation of 2 dimensional orthogonal variable spreading factors on Jacket matrices are also be investigated. The bit error rate(BER) performance under a multi-user environment for the additive white Gaussian noise (AWGN) channel demonstrated that the proposed scheme could provide flexible rates and lower correlation values

  • PDF

Compensation of Ultra-Precision Tool Position for Alignment Error (초정밀 공구 위치설정 오차의 보정)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.71-75
    • /
    • 2007
  • Geometrical error of ultra-precision machining due to spherical tool alignment error is analyzed. Deviation of spherical edge, ranged several ten micrometers, generates vertical and horizontal error of tool path and affects profile accuracy of machined surface. Simulation of machined error shows effect of tool alignment error and enables to estimate alignment error. This work provides technical insights into the minimizing of geometrical error of ultra-precision machining.

  • PDF

Total System Error Analysis for Corridor derivation of Hybrid VTOL through Flight Test (비행시험을 통한 복합형 수직이착륙 무인항공기의 회랑 산출을 위한 통합시스템오차 분석)

  • Jeong-min Kim;Song-geun Eom;Jeong-hwan Oh;Dong-jin Lee;Do-yoon Kim;Sang-hyuck Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.448-455
    • /
    • 2022
  • In this study, when establishing a UTM(UAS Traffic Management) system, a corridor must be set to separate the flight distance between unmanned aerial vehicles, and the size of the corridor was calculated in consideration of TSE(Total System Error). The flight data of the straight section and the turning section were collected using a hybrid vertical take-off and landing unmanned aerial vehicle. The flight data were derived from the TSE using the SQSM(Scalar Quantity Summation Method) method, and the impact on the straight and turning sections was analyzed by calculating in detail by NSE(Navigation System Error) and FTE(Flight Technical Error). The corridor size was calculated by referring to the TSE analysis results and PBN (Performance-based Navigation) manual.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

Analysis of Technical Error of Manual Measurements (직접 측정한 인체치수의 기술적 오차 분석)

  • Park, Jinhee;Nam, Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • Highly precision body measurements represent basic data required by industry and researches who wish to utilize information about the human body. The proficiency and expertise of the measurers have a significant influence on the error and accuracy of data when various parts from multiple subjects' bodies are measured. Therefore, in order to measure accurate body measurements (when measuring bodies directly), it is necessary to conduct objective analyses on errors. This study calculated the Relative Technical Error of Measurement (%TEM) using data that measured each of 24 subjects and discussed errors and methods to reduce errors by conducting comparison analysis based on measured items and objects. The result of analysis indicated that the errors based on age and gender of the objects of measurement were minor; however, there were comparatively distinct differences in measured errors based on measured items. 'Right and left Shoulder Angle' for all measured subjects displayed the greatest errors and standard deviations. 'Height' dimension, Lateral Malleolus Height and Head Height had big errors; in addition, 'Circumference', Neck Base Circumference and Armscye Circumference also had big errors. More careful measurements of such items with big errors require additional educational plan such as a proposal for more objective and detailed measurement methods. Items with small errors but big standard deviations such as Waist Circumference, Calf Circumference, Minimum Leg Circumference, Chest Circumference, Hip Circumference and Waist Circumference confirmed that errors for them greatly decreased with repeated experiments and resultant measurers increased proficiency; consequently, repeated measuring experiments for these items greatly enhance accuracy.