• 제목/요약/키워드: Taylor coefficients

검색결과 76건 처리시간 0.02초

Numerical Solutions of Fractional Differential Equations with Variable Coefficients by Taylor Basis Functions

  • Kammanee, Athassawat
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.383-393
    • /
    • 2021
  • In this paper, numerical techniques are presented for solving initial value problems of fractional differential equations with variable coefficients. The method is derived by applying a Taylor vector approximation. Moreover, the operational matrix of fractional integration of a Taylor vector is provided in order to transform the continuous equations into a system of algebraic equations. Furthermore, numerical examples demonstrate that this method is applicable and accurate.

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화 (Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem)

  • 윤영철;김효진;김동조;윙 캠 리우;테드 벨리치코;이상호
    • 한국전산구조공학회논문집
    • /
    • 제20권4호
    • /
    • pp.493-499
    • /
    • 2007
  • 본 연구에서는 미분 가능한 함수가 Taylor 전개로 표현되고 그 계수들은 주어진 함수와 미분에 대한 근사값을 제공할 수 있다는 점에 착안하여 m차 Taylor 다항식을 구성하고 이동최소제곱법을 이용하여 그 계수들을 구했다. 계산된 근사함수와 미분을 콜로케이션 개념을 바탕으로 균열 문제를 포함하는 고체문제에 대한 지배 미분방정식에 적용하여 차분식 형태의 이산화된 계방정식을 구성하였다. 본 연구의 해석기법은 격자망(grid)에 의존적이고 근사함수가 없는 유한차분법과 형상함수의 미분과 약형식의 적분산정, 필수경계조건 처리가 어려운 Galerkin법 기반의 무요소법의 단점을 효과적으로 극복한 새로운 수치기법이다.

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

가스 터빈 축 내부의 비정상 유동의 불안정성 (Transient Flow Instability inside a Gas Turbine Shaft)

  • 허남건;원찬식
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.103-107
    • /
    • 1999
  • Transient flow inside a hollow shaft of a Gas Turbine engine during sudden engine stop may result in non uniform heat transfer coefficients in the shaft due to flow instability similar to steady Taylor vortex, which may decrease the lifetime of the shaft. In the present study, transient Taylor vortex phenomena inside a suddenly stopped hollow shaft are studied analytically. Flow visualization is also performed to study the shape and onset time of Taylor Vortices for various initial rotational speed.

  • PDF

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.

ON GENERALIZATION OF BI-PSEUDO-STARLIKE FUNCTIONS

  • SHAH, SHUJAAT ALI;NOOR, KHALIDA INAYAT
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.341-350
    • /
    • 2022
  • We introduce certain subclasses of bi-univalent functions related to the strongly Janowski functions and discuss the Taylor-Maclaurin coefficients |a2| and |a3| for the newly defined classes. Also, we deduce certain new results and known results as special cases of our investigation.

Inference on Overlapping Coefficients in Two Exponential Populations Using Ranked Set Sampling

  • Samawi, Hani M.;Al-Saleh, Mohammad F.
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.147-159
    • /
    • 2008
  • We consider using ranked set sampling methods to draw inference about the three well-known measures of overlap, namely Matusita's measure $\rho$, Morisita's measure $\lambda$ and Weitzman's measure $\Delta$. Two exponential populations with different means are considered. Due to the difficulties of calculating the precision or the bias of the resulting estimators of overlap measures, because there are no closed-form exact formulas for their variances and their exact sampling distributions, Monte Carlo evaluations are used. Confidence intervals for those measures are also constructed via the bootstrap method and Taylor series approximation.