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Inference on Overlapping Coefficients in Two
Exponential Populations Using Ranked Set Sampling

Hani M. Samawi'), Mohammad F. Al-Saleh?

Abstract

We consider using ranked set sampling methods to draw inference about the
three well-known measures of overlap, namely Matusita’s measure p, Morisita’s
measure A and Weitzman’s measure A. Two exponential populations with different
means are considered. Due to the difficulties of calculating the precision or the bias
of the resulting estimators of overlap measures, because there are no closed-form ex-
act formulas for their variances and their exact sampling distributions, Monte Carlo
evaluations are used. Confidence intervals for those measures are also constructed
via the bootstrap method and Taylor series approximation.

Keywords: Bootstrap method; Matusita’s measure; Morisita’s measure; overlap
coefficients; Taylor expansion; Weitzman’s measure; ranked set sampling.

1. Introduction

Overlap measures are widely used in reliability theory, ecology and other fields. Three
overlap coefficients (OVL), (Matusita’s measure p, Morisita’s measure A and Weitzman’s
measure A) were found in the literature. However, Weitzman’s measure A is the most
commonly used overlap coefficient. This OVL measure is defined as the intersection area
of two probability density functions. It measures the similarity, the agreement or the
closeness of the two probability distributions. It introduced first by Weitzman (1970)
and then many other authors considered it (see for example, Bradley and Piantadosi,
1982; Inman and Bradley, 1989; Clemons, 1996; Reiser and Faraggi, 1999; Clemons and
Bradley, 2000; Mulekar and Mishra, 2000).

Applications of A can be found in Ichikawa (1993) (for the probability of failure in
the stress-strength models of reliability analysis), Federer et al. (1963) (for estimating
of the proportion of genetic deviates in segregating populations and Sneath (1977) (as
a measure of distinctness of clusters). For additional references of such methodology
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applications in ecology and other fields, see Mulekar and Mishra (1994, 2000). Also, the
history of such procedures is summarized by Inman and Bradley (1989).

In many agricultural and environmental studies and recently in human populations
and reliability analysis, quantification (the actual measurement) of a sampling unit can
be more costly than the physical acquisition of the unit (see for example, Samawi and
Al-Sakeer, 2001).

In many sampling survey and experimental studies considerable cost savings can
be achieved if the number of measured sampling units (experimental units) is only a
small fraction of the number of available units but all available units contribute to the
information content of the measured units. Ranked set sampling(RSS) is a method
of sampling that can achieve the goal of reducing the sampling cost. RSS was first
introduced by McIntyre (1952). The use of RSS in testing hypotheses procedure is
highly powerful and superior to the standard simple random sampling(SRS) and also
more efficient than using simple random sample for estimating some of the population
parameters (see, Kaur et al., 1995; Patil et al., 1999).

The RSS procedure can be summarized as follows: Select » random samples, each
of size r units from the population and rank the units within each sample with respect
to a variable of interest visually or by any inexpensive judgmental method. Then an
actual measurement is taken from the unit with the smallest rank from the first sample.
From the second sample, an actual measurement is taken from the unit with the second
smallest rank and the procedure is continued until the unit with the largest rank is chosen
for actual measurement from the r** sample. In this way, we obtain a total of r measured
units, one from each sample. The cycle may be repeated m times until n = mr units
have been measured.

Variations of RSS such as extreme ranked set sampling(ERSS) and median ranked set
sampling(MRSS) were investigated by Samawi et al. (1996a) and Muttlak (1997) respec-
tively. Samawi and Muttlak (1996, 2001) used RSS and MRSS to improve the efficiency
of the ratio estimator comparing with simple random sample procedure. Moreover, Al-
Saleh and Al-Kadiri (2000) showed that the efficiency of estimating the population mean
can be significantly improved more when double ranked set sampling scheme(DRSS) is
considered. They proved that ranking in the second stage is easier than in the first stage.
Samawi (2001) suggested double extreme ranked set sampling scheme(DERSS) for esti-
mating the population mean using naive and regression estimators. Also, Al-Saleh and
Al-Omari (2002) introduced the multistage ranked set sampling(MIRSS). More details
about RSS, are available in Kaur et al. (1995) and Patil et al. (1999).

1.1. General setting and definitions of OVL measures

Let fi(x) and fo(x) be two probability density functions. Assuming samples of obser-
vations are drawn from continuous distributions (Slobdchikoff and Schulz, 1980; Harner
and Whitmorte, 1977; MacArthur, 1972). The overlap measures are defined as follows:
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Matusita’s Measure (1955): p = / V(@) f2(z)dz,

e [fi@)fala)de
Jn@y )

Weitzman’s Measure (1970) : A = / ming f1 (z) fo(x) }e.

Morisita’s Measure (1959) :

These measures can be directly applied to discrete distributions by replacing the integrals
with summations and also can be generalized to multivariate distributions. All three
overlap measures of two densities are measured on the scale of 0 to 1. Note that, the
overlap value close to 0 indicates extreme inequality of the two density functions and the
overlap value of 1 indicates exact equality.

The mathematical structure of these measures is complicated; there are no results
available on the exact sampling distributions of their estimators. Researcher such as
Smith (1982) derived formulas for estimating the mean and the variance of the discrete
version of Weizman’s measure using delta method. Mishra et al. (1986) gave some
properties of the sampling distributions for a function of LAX, under the assumption of
homogeneity of variances for the case of two normal distributions. Mulekar and Mishra
(1994) simulated the sampling distribution of estimators of the overlap measures for
normal densities with equal means and obtained the approximate expressions for the bias
and variance of their estimators. Lu et al. (1989) investigated the sampling variability of
some estimators of these measures using simulation Dixon (1993) describes the use of the
bootstrap and jackknife techniques for Gini coefficient of size hierarchy and Jaccard index
of community similarity. Mulekar and Mishra (2000) addressed the problem of making
inferences about the overlap coefficients for two normal densities with equal means using
jackknife, bootstrap, transformation and Taylor series approximation. Reiser and Faraggi
(1999) considered the problem of making inference about the overlap coefficient, as a
measure of bioequivalence under the name proportion of similar responses, for normal
densities with the equal variances, based on the non-central ¢- and F-distributions. The
sampling behavior of a nonparametric estimator of was examined by Clemons and Bradley
(2000), using Monte Carlo and bootstrap techniques. Moreover, Al-Saidy et al. (2005)
investigated drawing inference about OVL measures for two weibul distributions with
equal shape parameter.

In this paper all above three overlap measures (p, A and A) are considered for two
exponential distributions with different means using RSS. The exponential distribution
has been used in reliability applications. It is used to model data with a constant failure
rate (indicated by the hazard plot which is simply equal to a constant, see Mann et al.,
1974.)

A random variable X follows the exponential (denotes by EXP(6)) if it has the cdf
and pdf given by:

F(z)=1—exp (w%)’ forz >0 (1.1)
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and

flz) = %exp (—%) , forxz >0, (1.2)

respectively, where 6 > 0.

2. Overlap Measures (OVL) for Exponential Distribution

Suppose fi(z) and fa(z) represent the exponential densities with §; and 6, means
respectively. Let R = 60, /6;, as in Mulekar et al. (2001) and Al-Saleh and Samawi (2006),
then the continuous version of the three proposed overlap measures, can be expressed
as a function of R as follows (the derivation of the three overlap measures are straight
forward and it is omitted from the content of this paper):

2R
= VI 2.1
P=TTR (2.1)
AR
A= 2.2
1+ R)?’ (2:2)
A=1—R—1—1R1—}%, R+#1. (2.3)

Note that, all three measures are not monotone for all R > 0. Similar to Mulekar
and Mishra (2000), p, A and A have nice properties, such as, symmetry in R, i.e.,
OVL(R) = OVL(1/R) and invariance under linear transformation, ¥ = aX + b, a # 0.
They all attain the maximum value of 1 at R = 1.

3. Statistical Inference Using RSS

3.1. Estimation

The OVL measures p, A and A are functions of §; and 8,. In order to draw any
inference about the OVL measures, we need first to get estimates for 8; and 6,. Suppose
X1k, Xi@pks -1 X1groyr) and (Xoyk, Xo@yk, -« Xogra)k), k= 1,2,...,m are two
independent RSS samples drawn from f1(z) and fa(x) respectively, where

1 z

filx) = Eexp (—9—1> , forz>0,
1 z

fo(z) = gexp (—0—2) , forz>0.

The empirical estimators based on the two RSS samples are given by:

1. From the first sample

Ty M

ZZXl(i)k

é\l = 7(1) = ﬂfnll—, where ny =rim. (3’1)
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2. From the second sample

re m

ZZX2(i)k
92 = 7(2) = %——, where No = Tom. (32)
n2
Note that, it is easy to show
E(6) = 61, E(f2) = 02,
Var(@)—(’%i L d V(5)~ 2
! —mrfl_:lrl—i+l o anve) = T3 1"2—@—{-1

Also, R can be estimated by RRSS = 91 / 02 Hence, by using
Delta method of approximation, the variance of R can be approximated by

T1 1 T2 1
~ ) ;rl—i—!—l ;rg—i—!—l
Var(R) = R 5 + = > . (3.3)
mrj mrs

The OVL measures considered here are functions of R, therefore, based on our esti-
mate of R, the OVL coefficients can be estimated by

_ 2VErss (3.4)

IBRSS it = )
1+ Rpss

~ 4R

ARss = ———ARLQ, (3.5)
(1+ Rrss)

~ R 1

Agss = 1— R;%SHRSS 1- . (3.6)

Rrss

3.2. Asymptotic properties

Let OVL= g(R), then OVL = g(ﬁRSS). Again by using the well-known Delta method
(Taylor series expansion) the approximate sampling variance of the OVL measures can
be obtained as follows:

1 1 T2 1
NR(l—R)2 ;rl—i—f—l ;’f‘z—i'l—l

Var(ﬁRSS) = (1+R)4 ~ mrf + — mr% ) (37>
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T1 1 T2 1
P> 2

~ . _16R(1-R)? |Smn—itl ‘Lra-i+ld

= = : 3.8

Var(ARSS) (1 +R)6 m,’.% mr% b ( )
T1 1 T2 1

Var(Awec) = RTR(In R)? ;rl—iﬂ ;Tz—i+l io

It is known that the estimators of those OVL coefficients are biased. Approximations
for the biases of the OVL coefficients estimates, using Taylor series expansion, are as
follow:

o 1. T2 1

. .. ~VRBRR-2) -1 ;ﬁ—iﬂ ;r —i+1

1. Blas(pRSS)= ( ( 3) ) =1 3 + 12 P )
2(1+R) mr3 mr;

f: 1 ZZ 1
~ 2 — —iT] — i+1 bt Ty — i+ 1
2. Bias(Rpss)= i 2) | i =

(1+ R)* mr? mr3 ’
( r1 T2
1 1
DT Xmsir
H(R) | EL— &=L , ifR>1,
3. BiaS(ARss);< . o
e o
— ri—i1+1 ,_17'2——7:4-1
—H(R) | &+—— + = 5 , f R<1,
m’rl m’r2

where H(R) = R?)[RCR-V/0-RB)R{9R —In(R) — 2} In(R) — (R — 1)?]/(R — 1)°.
Reasonable estimates for the above variances and the biases can be obtained by
substituting R by ﬁRSS in the above formulas.
For variance and bias for the OVL measures under simple random sampling (SRS)
see Mulekar et al. (2001) or Al-Saleh and Samawi (2006). Now, the asymptotic relative
efficiency of OVL measures estimates is defined by

Eff(OVLsrs, OVinss) = Mo(OVLsrs)
MSE(OVLgss)

where
MSE(OVL) = Var(OVL) + Bias(OVL)?

Table 3.1 and 3.2 show the asymptotic relative efficiencies for OVL measures using
RSS relative to using SRS.
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Table 3.1: Asymptotic relative efficiency of OVL estimates using RSS relative to using
SRS (m is 8).

p A A
R {m/ra| 2 [ 3] 45 2 [ 3T 45 2 | 3] 41
2 | 152|157 | 1.58 | 1.58 || 1.49 [ 1.54 [ 1.56 | 1.56 [| 1.49 | 1.55 [ 1.56 | 1.56
010 |3 165 [ 179187 | 101 [ 1.62 | 1.76 | 1.84 | 1.88 || 1.62 | 1.76 | 1.85 | 1.89
4 | 170 |1.91 [ 2.06 | 2.15 || 1.67 | 1.88 | 2.03 | 2.12 || 1.68 | 1.89 | 2.03 | 2.12
5 [1.73 193218 [232 [ 1.70 [ 1.95 | 2.15 | 2.29 || 1.70 | 1.96 | 2.15 | 2.29
2 1169|174 ] 1.75 [ 174 [[ 167 [ 1L.71 [ 1.72 | 1.71 [[ 1.52 | 1.57 [ 1.59 | 1.59
050 |3 | 185200 208|211 || 1.82 | 1.97 | 2.05 | 208 || 1.65 | 1.79 | 1.87 | 1.91
4 ]1.91 214228 | 238 [ 1.88 | 211 | 2.5 | 2.34 || 1.71 | 1.92 | 2.06 | 2.15
5 [1.93] 221 [242[256 [[1.90 | 2.18 | 2.38 | 2.52 || 1.73 | 1.99 | 2.18 | 2.32
2 218|235 | 240 [ 241 [[ 218 [ 235 [ 2.40 [ 241 [[ 1.54 [ 1.59 [ 1.60 | 1.60
101 L3 [257305]335|350 || 257 | 3.05 | 3.35 | 3.50 || 1.67 | 1.81 | 1.89 | 1.93
4 1276 ] 350 | 4.06 | 444 || 2.76 | 3.50 | 4.06 | 444 || 1.73 | 1.94 | 2.08 | 2.17
5 [284]376[456 517 [ 284376 | 456 | 517 || 1.75 | 2.01 | 2.20 | 2.34
2 1157162 [163]163[156[161]1.62[162] 1.54][160] 1.61] 161
150 L3 | L71 [ 1851193 [1.97 | 170 | 1.84 | 1.92 | 1.96 || 1.68 | 1.82 | 1.90 | 1.94
4 [177 198 [ 212 |22l || 175 [ 1.96 | 211 | 2.20 || 1.74 | 1.95 | 2.09 | 2.18
5 | 179 [205] 225238 ] 1.77 | 2.03 | 2.23 | 2.37 || 1.76 | 2.02 | 2.22 | 2.35
2 1148|153 | 1.55 [ 1.55 | 1.48 [ 1.53 [ 1.55 | 1.55 | 1.56 | 1.61 | 1.62 | 1.62
20 3 161 [175[1.83 187 [[1.61 | 1.75 | 1.83 | 1.87 || 1.69 | 1.83 | 1.91 | 1.95
4 1166|187 [202 [ 211 || 1.66 | 1.87 | 2.02 | 2.11 || 1.75 | 1.96 | 2.10 | 2.19
5 169194214228 (160194214 | 228 |[ 177 | 2.03 | 2.23 | 2.36

Table 3.1 and 3.2 show that, using RSS for estimating all three overlap measure is more
efficient that using SRS. The efficiency increases as the set size r; and/or r, increases.
Increasing the number of cycles m slightly decreases the efficiency. This may be to the
fact that this relative efficiency is based on large sample approximation. Therefore, the
larger is the sample size is the closer is the relative efficiency to the exact one.

3.3. Interval estimation

Normal approximation to the sampling distribution, using Delta-method, work fairly
well for large sample. Therefore, the 100(1 — a)% confidence intervals for the OVL coef-

ficients can be computed easily as {(TV\LRSS + Z1_ o2 @(O/\EJRSS)}, where Z;_,/;
is a/2 the upper quantile of the standard normal distribution.

These confidence intervals are not the best because of the bias involved in OVL
coefficients estimates, however, for large samples they work fairly well. In previous
Sections we approximate the bias of those OVL coefficients. Using these approxima-
tions, the bias corrected interval can be computed as [{(ﬁ RSS — Bias(ﬁ Rss)} =

Zy—oy2\ Var(OVLgss)].
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Table 3.2: Asymptotic relative efficiency of OVL estimates using RSS relative to using
SRS (m is 40).

p A A
R |nm/ra| 2 | 3 [ 415 2 [ 3] 4] s 2 [ 3] 475
2 137|146 | 1.50 [ 1.52 || 1.36 | 1.46 [ 1.50 [ 1.51 [[ 1.36 | 1.46 | 1.50 [ 1.51
o0 |3 [ 1481166 [ 177 [1.83 [ 147 | 1.66 | 1.76 | 1.82 || 1.47 | 1.66 | 1.77 | 1.82
4 [ 152178 1.95 [205 || 1.52 [ 1.77 | 1.94 [ 2.05 || 1.52 | 1.77 | 1.94 | 2.05
5 | 154 ] 1.84 [2.06 [ 221 || 1.54 [ 1.83 | 3.05 | 3.21 || 1.54 [ 1.84 [ 2.05 | 2.21
2 [140 150 | 1.54 [ 1.55 | 1.40 [ 1.49 [ 1.53 [ 1.55 [[ 1.37 [ 1.46 [ 1.50 [ 1.52
050 3 [ 151 [ 171 [1.81 [ 1.87 1 1.51 [ 1.70 | 1.81 [ 1.86 || 1.48 | 1.65 | 1.77 | 1.83
4 | 1.56 ] 1.81 | 1.99 [2.10 || 1.55 [ 1.80 | 1.98 | 2.10 || 1.52 [ 1.78 | 1.95 | 2.06
5 [ 158188211 [226 | 157 [ 1.88 [ 210|226 |[ 154 | 1.84 | 2.06 | 2.22
2 [ 184212 [224 228 [[184 212224228 [ 1.37]147 ] 151 [ 152
1o1 |3 2162741309329 216|274 | 3.09 329 || 148 | 1.67 | 1.77 | 1.83
4 [229]312[373 415 [ 229 312373415 153178 1.95| 2.06
5 235334417 [481 [[ 235334417 [ 481 || 1.54 [ 1.84 | 2.06 [ 2.22
2 | 137147151 [ 153 ][ 1.37 [ 147 [ 1.51 [ 153 ] 1.37 [ 147 [ 1.51 [ 1.52
1so L3 [ 149 168|178 [184 [ 148 [ 1.67 [ 1.78 [ 1.84 || 148 | 1.67 | 1.78 [ 1.83
4 [1.53 [ 179 [1.96 [2.07 [ 1.53 | 1.79 | 1.96 [ 2.06 || 1.53 | 1.78 | 1.95 | 2.06
5 | 1.55]| 1.8 [207 223 1.55]1.85 [ 207|222 155|185 [ 207|222
2 | 136146 | 1.50 [ 1.51 ] 1.36 [ 1.46 [ 1.50 [ 1.51 [ 1.37 [ 1.47 [ 1.51 | 1.52
00 3 |147]166 ] 1.76 [ 1.82 || 147 [ 166 | 1.76 | 1.82 || 1.48 [ 1.67 | 1.78 | 1.84
4 [1.52 [ 177 [1.94 [205 | 1.52 [1.77 | 1.94 [ 2.05 || 1.53 [ 1.79 | 1.95 | 2.06
5 [153]|1.83]205]221 [[153]1.83]205] 221 [[ 1.55 | 1.85 | 2.07 | 2.22

3.4. Bootstrap inference

The uniform (ordinary) bootstrap resampling by Efron (1979) is based on resampling
with replacement from the observed sample according to a rule which places equal prob-
abilities on sample values. For two-sample case the uniform resampling rules will apply
to each sample separately and independently (see, Ibrahim, 1991; Samawi et al., 1996b;
Samawi et al., 1998). In case of RSS, we will adopt the stratified bootstrap algorithm
(see, Hui et al., 2005), where each stratum contains only one type of order statistics. The
method is described as follows:

1.

For the first sample, divide the sample into r; mutually exclusive strata each con-
tains m 4.i.d observations (one type of order statistics).

Independently from each stratum generate a resample with replacement of size m
by placing a mass probability (1/m) on each original observation in that stratum.

Combine all r; resamples to form a RSS resample of size n; = mr;.

For the second sample, divide the sample into ro mutually exclusive strata each
contains m i.i.d observations (one type of order statistics).
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5. Again independently from each stratum generate a resample with replacement of

size m by placing a mass probability (1/m) on each original observations in that
stratum.

6. Using the resamples from Step 1 to 5, compute the OVL measures

7. Repeat Step 1-6 B times to have B different resampled OVL measures (say,
OVly,..., OVlp)

8. Ranked them from the smallest to the largest (OVly,...,0Vlg))

9. An approximate 95% bootstrap confidence interval is (OVly), OVl p_g)), where
k = Int[0.025(B + 1)]

4. Simulation study

In our simulation study we include the following parameters: R = 0.2,0.5,0.8; m =
2,3; ro = 2,3; m = 10,40 and o = 0.05. For each combinations of R,ry,r, and m, «,
1,000 simulated sets of SRS and RSS observations were generated under the assumption
that both densities have exponential distribution with different means. All three OVL
measures were computed from the SRS simulated samples and from the RSS simulated
Samples. Then the associated approximate 95% confidence intervals bias were computed
for the SRS and RSS samples using Taylor and bootstrap approximation. The bootstrap
approximation was based on B = 1000 resamples.

Tables 4.1-4.3 indicate that the bias of the proposed OVL estimators is negligible
and |bias| decreases as the sample sizes are increased for both SRS and RSS. However,
the asymptotic bias when using RSS is smaller than when using SRS. The bootstrap bias
using SRS is smaller than when using RSS. With respect to the coverage probability (1 —
«), Taylor series approximation method seem to work well when SRS is used except for
R close to one and very small sample sizes. The coverage probabilities for all three OVL
coeflicients are getting closer to the nominal value when the sample sizes are increased
for both SRS and RSS. Bootstrap methods coverage probability work fairly good in all
cases.

In conclusion, it seems that there is no best method in all situations. If computers are
available, bootstrap method can be used. Taylor series approximation is recommended
for larger sample sizes and R < 0.8.
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Table 4.1: Absolute value of Bias = |Bias|, Length of the Interval (L.) and the Coverage
Probability (Cov.), when R is 0.20 and m is 10 or 40, using RSS. Results for SRS in
(Bold).

Taylor App. Bootstrap

(n1,n2) I |Bias| | L. [ Cov. |Bias| | L. [ Cov.
(20,20) | p | 0.020(0.029) | 0.26(0.31) | 0.89(0.93) || 0.013(0.009) | 0.38(0.28) | 0.98(0.93)
r1=2 | X |0.022(0.031) | 0.38(0.46) | 0.89(0.93) || 0.012(0.009) | 0.55(0.41) | 0.98(0.93)
r2=2 | A |0.013(0.019) | 0.29(0.35) | 0.90(0.94) || 0.016(0.011) | 0.45(0.32) | 0.93(0.93)
(20,30) | p [ 0.015(0.023) | 0.23(0.28) | 0.89(0.93) || 0.009(0.003) | 0.35(0.26) | 0.97(0.93)
ri=2 | A | 0.015(0.025) | 0.33(0.42) | 0.89(0.94) || 0.019(0.002) | 0.49(0.38) | 0.97(0.93)
r2=3 | A]0.009(0.015) | 0.25(0.31) | 0.90(0.94) || 0.010(0.002) | 0.38(0.29) | 0.97(0.93)
(30,30) [ p [ 0.011(0.019) | 0.19(0.25) | 0.91(0.94) || 0.009(0.007) | 0.30(0.24) | 0.97(0.94)
r1=3 | A | 0.011(0.020) | 0.29(0.38) | 0.91(0.94) || 0.009(0.001) | 0.44(0.35) | 0.97(0.94)
r2 =3 | A[0.007(0.012) | 0.21(0.28) | 0.93(0.94) || 0.010(0.004) | 0.34(0.26) | 0.97(0.94)
(80,80) | p [ 0.005(0.007) | 0.13(0.15) | 0.91(0.94) || 0.009(0.007) | 0.21(0.15) | 0.97(0.94)
r1=2 | A | 0.005(0.007) | 0.20(0.23) | 0.91(0.94) || 0.002(0.005) | 0.31(0.22) | 0.97(0.94)
r2=2 | A ]0.003(0.004) | 0.14(0.17) | 0.93(0.94) || 0.003(0.005) | 0.23(0.17) | 0.97(0.94)

(120,120) | p | 0.003(0.004) | 0.10(0.13) | 0.93(0.93) [[ 0.005(0.003) | 0.16(0.12) | 0.97(0.93)
r1=3 | A | 0.003(0.005) | 0.15(0.19) | 0.93(0.94) || 0.002(0.002) | 0.24(0.18) | 0.97(0.93)
r2=3 | A]0.002(0.003) | 0.11(0.14) | 0.94(0.95) || 0.002(0.002) | 0.17(0.13) | 0.97(0.93)

Table 4.2: Absolute value of Bias = |Bais|, Length of the Interval (L.) and the Coverage
Probability (Cov.), when R is 0.50 and m is 10 or 40 using RSS. Results for SRS in
(Bold).

Taylor App. Bootstrap
(n1,n2) |Bias| [ L. | Cov. |Bias| | L. [ Cov.
(20,20) [ p [ 0.024(0.035) | 0.16(0.19) | 0.88(0.90) [[ 0.011(0.011) | 0.24(0.17) | 0.98(0.93)
r1=2 | A |0.042(0.060) | 0.30(0.35) | 0.88(0.90) || 0.043(0.031) | 0.42(0.31) | 0.98(0.93)
r2=2 | A|0.021(0.029) | 0.37(0.44) | 0.91(0.94) || 0.013(0.006) | 0.48(0.37) | 0.98(0.93)
(20,30) | p [0.019(0.029) | 0.15(0.18) | 0.87(0.93) || 0.011(0.011) | 0.23(0.16) | 0.97(0.94)
r1=2 | X 0.032(0.049) | 0.28(0.33) | 0.87(0.93) || 0.055(0.027) | 0.41(0.29) | 0.97(0.94)
r2=3 | A|0016(0.025) | 0.32(0.40) | 0.92(0.95) || 0.031(0.006) | 0.45(0.35) | 0.97(0.94)
(30,30) [ p [0.014(0.023) [ 0.12(0.16) | 0.93(0.95) || 0.021(0.021) | 0.18(0.14) | 0.97(0.94)
ri=3 | X [0.024(0.040) | 0.22(0.29) | 0.93(0.95) || 0.019(0.017) | 0.33(0.26) | 0.97(0.94)
r2 =3 | A[0.011(0.020) | 0.27(0.36) | 0.93(0.95) || 0.003(0.002) | 0.40(0.32) | 0.97(0.94)
(80,80) [ p [ 0.006(0.009) | 0.08(0.10) | 0.92(0.93) || 0.011(0.011) | 0.13(0.09) | 0.97(0.93)
r1=2 | A |0.011(0.015) | 0.16(0.18) | 0.92(0.93) || 0.009(0.008) | 0.24(0.17) | 0.97(0.93)
r2 =2 | A|0.005(0.007) | 0.19(0.22) | 0.93(0.94) || 0.004(0.001) | 0.29(D.21) | 0.97(0.93)
(120,120) [ p | 0.003(0.006) | 0.06(0.08) | 0.93(0.94) || 0.020(0.020) | 0.10(0.08) | 0.97(0.94)
r1=3 | A ]0.006(0.010) | 0.12(0.15) | 0.93(0.94) || 0.006(0.007) | 0.18(0.15) | 0.97(0.94)
r2 =3 | A [0.003(0.005) | 0.14(0.18) | 0.94(0.94) || 0.001(0.001) | 0.22(0.17) | 0.97(0.94)
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Table 4.3: Absolute value of Bias = |Bais|, Length of the Interval (L.) and the Coverage

Probability (Cov.), when R is 0.80 and m is 10 or 40, using RSS. Results for SRS in
(Bold).

Taylor App. Bootstrap
(n1,n2) [Bias] | L. | Cov. Biass, [ L. [ Cov.
(20,20) | p | 0.021(0.030) | 0.08(0.10) [ 0.75(0.67) |[ 0.010(0.010) [ 0.09(0.10) | 0.98(0.96)
ri=2 | A |0.040(0.058) | 0.15(0.18) | 0.75(0.67) || 0.061(0.042) | 0.29(0.19) | 0.98(0.96)
r2=2 [ A]0.011(0.017) | 0.34(0.38) | 0.93(0.95) || 0.085(0.060) | 0.41(0.31) | 0.98(D.96)
(20,30) | p | 0.017(0.025) | 0.08(0.08) | 0.80(0.70) [ 0.010(0.010) | 0.14(0.09) | 0.98(0.96)
=2 A | 0.032(0.048) | 0.14(0.16) | 0.80(0.71) || 0.060(0.040) | 0.27(0.17) | 0.98(0.96)
r2=3 [ A[0.013(0.017) | 0.31(0.35) | 0.91(0.95) || 0.083(0.050) | 0.39(0.29) | 0.98(0.96)
(30,30) | p | 0.012(0.020) | 0.05(0.07) [ 0.88(0.75) ][ 0.020(0.020) | 0.10(0.07) | 0.98(0.96)
ri=3 | A |0.023(0.038) [ 0.09(0.13) | 0.88(0.75) || 0.034(0.029) | 0.19(0.14) | 0.98(0.96)
r2=3 | A]0.008(0.014) | 0.25(0.31) | 0.95(0.95) || 0.049(0.042) | 0.32(0.26) | 0.98(0.96)
(80, 80) p | 0.006(0.008) | 0.03(0.03) | 0.93(0.98) || 0.010(0.010) | 0.06(0.04) | 0.98(0.96)
ri=2 | XA |0.011(0.015) | 0.06(0.07) | 0.93(0.98) || 0.017(0.010) | 0.11(0.07) | 0.98(0.96)
ro =2 A | 0.005(0.007) | 0.19(0.21) | 0.94(0.96) || 0.023(0.012) | 0.24(0.18) | 0.98(0.96)
(120,120) | p | 0.003(0.005) | 0.02(0.03) 0.93(0.95) || 0.009(0.009) | 0.04(0.03) | 0.98(0.96)
r1=3 | XA | 0.006(0.010) | 0.04(0.06) | 0.93(0.95) || 0.010(0.008) | 0.08(0.06) | 0.98(0.96)
rpg =3 A | 0.003(0.005) | 0.14(0.18) | 0.94(0.97) {| 0.010(0.008) | 0.19(0.16) | 0.98(0.96)
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