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ABSTRACT. In this paper, we propose a new semi-analytic approach based on the generalized
Taylor series for solving nonlinear differential equations of fractional order. Assuming the solu-
tion is expanded as the generalized Taylor series, the coefficients of the series can be computed
by solving the corresponding recursive relation of the coefficients which is generated by the
given problem. This method is called the generalized differential transform method(GDTM).
In several literatures the standard GDTM was applied in each sub-domain to obtain an accu-
rate approximation. As noticed in [19], however, a direct application of the GDTM in each
sub-domain loses a term of memory which causes an inaccurate approximation. In this work,
we derive a new recursive relation of the coefficients that reflects an effect of memory. Sev-
eral illustrative examples are demonstrated to show the effectiveness of the proposed method.
It is shown that the proposed method is robust and accurate for solving nonlinear differential
equations of fractional order.

1. INTRODUCTION

The beginning of fractional calculus is considered to be the by Leibniz’s letter to L’Hospital
in 1695, where the notation for differentiation of non-integer order 1/2 is discussed. Since
then, for the three centuries, this topic has been investigated by the pure mathematicians.
Because of the non-local property of the fractional derivative, many researchers found out
that a mathematical model with fractional calculus is better than the integer order to describe
many phenomena which involve the effect of memory. Recently, the fractional calculus has
been playing more important roles in many science and engineering fields[1, 2, 3, 4]. A
number of numerical methods for solving differential equations of the fractional have been
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introduced. Authors in [5] presented the predictor-corrector approach based on the Adams-
Bashforth-Moulton type numerical method that has been successful to obtain the stable ap-
proximations for solving many fractional differential equations. In [6], authors proposed a
high order method by employing a block-by-block approach which is common method for
solving the integral equations. Some of semi-analytic methods such as the Adomian decompo-
sition method(ADM)[7, 8], homotopy analysis method(HAM) [9, 10], homotopy perturbation
method(HPM)[11, 12], variational iteration method(VIM)[13, 14, 15] and generalized differen-
tial transform method(GDTM)[16, 17, 18, 19, 20, 21] have been introduced to provide analytic
or numeric approximations.

In this paper, we focus on the generalized differential transform method which is based on
the generalized Taylor series. From the given fractional differential equation, the GDTM pro-
vides a simple recurrence relation of the generalized Taylor series’ coefficients of the solution.
However, the approximate solution by the GDTM has a limitation of accuracy due to the local
convergence property of the generalized Talyor series. To overcome this limitation the stan-
dard GDTM has been applied in each sub-domain [22, 23, 24]. As presented in [19], a direct
application of the GDTM in each sub-domain with a fixed initial condtion does not impose an
effect of memory which is the main property of differential operator of fractional order. Thus
it causes an increasing error as the fractional order is decreasing. In this work, we provide the
new recurrence relations that contains the effect of memory. The paper is organized as follows.
Section 2 introduces some preliminary results for the fractional calculus that we shall use. In
Section 3, we present the basic ideas and some properties of GDTM. In Section 4, the new
recurrence relation of complex nonlinear functions are introduced. In Section 5, numerical re-
sults of several examples are demonstrated by using new recurrence relations and are compared
with the ones obtained by another numerical method. Finally, we give a conclusion in Section
6.

2. FRACTIONAL CALCULUS

In this section we introduce some basic definitions and properties of the fractional integration
and differentiation. There are two main definitions of fractional calculus: Riemann-Liouville’s
and Caputo’s definition. We adopt the Caputo’s definition in this work.

Definition 2.1. A real valued function f(t), t > 0 is said to be in the space Cµ, µ ∈ R if there
etists a real number p, p < µ such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞), and it is said
to be in the space Cmµ if and only if f (m) ∈ Cµ, m ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α > 0 with of a
function f(t) ∈ Cµ, t > 0, µ ≥ −1 is defined by

Jαa f(t) =


1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, a ≥ 0, x > a,

f(t), α = 0.

The operator Jαa satisfies the following properties: For f(t) ∈ Cµ, µ ≥ −1, α, β ≥ 0 and
γ > −1,
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1. Jαa J
β
a f(t) = JβJαa f(t) = Jα+βa f(t),

2. Jαa (t− a)γ =
Γ(γ + 1)

Γ(γ + α+ 1)
(t− a)γ+α.

Definition 2.3. The fractional derivative in the Caputo sense of f(t) [1], f(t) ∈ Cm−1,m ∈
N, t > 0 is defined by

Dα
a f(t) =


Jm−αa

(
dm

dtm
f(t)

)
, m− 1 < α < m,

dm

dtm
f(t), α = m.

For α > 0, γ > −1 and constant C, Caputo fractional derivative has some basic properites
as follows:

1. Dα
aC = 0,

2. Dα
a (t− a)γ =

Γ(γ + 1)

Γ(γ + 1− α)
(t− a)γ−α.

3. GENERALIZED DIFFERENTIAL TRANSFORM METHOD

In this section we describe the basic concept, definitions and some properties of the gen-
eralized differential transform method(GDTM) For the fractional differential operator Dα

a ,
m− 1 < α ≤ m, in the sense of Caputo, let us define (Dα

a )n by

(Dα
a )n = Dα

a ·Dα
a · · ·Dα

a , (n-times).

Theorem 3.1. (Generalized Taylor’s Formula) Suppose that (Dα
a )kf(t) ∈ C(a, b] for k =

0, 1, ..., n+ 1, where 0 < α ≤ 1, then we have [17]

f(t) =
n∑
i=0

(t− a)iα

Γ(iα+ 1)
((Dα

a )if)(a) +
((Dα

a )n+1f)(η)

Γ((n+ 1)α+ 1)
(t− a)(n+1)α

with 0 ≤ η ≤ t, ∀t ∈ (a, b]

For an analytic function f(t) let us define the generalized differential transform(GDT) of
the kth derivative as follows:

F (k) =
1

Γ(αk + 1)
[(Dα

a )kf(t)]t=0,

where 0 < α ≤ 1, k = 0, 1, 2, · · · ., and the generalized differential inverse transform of F (k)
is defined as follows:

f(t) =

∞∑
k=0

F (k)(t− a)αk.

In case of α = 1, then the GDT reduces to the classical differential transform. Several funda-
mental properties of the GDT are listed in [22, 24]
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3.1. Generalized differential transforms for nonlinear functions. In this section we de-
scribe how to construct the generalized differential transforms F (k) for several nonlinear func-
tions [20].

Let us consider f(y(t)) = eay(t), where a is a constant. Taking the fractional derivative Dα

to f(y(t)) gives

Dαf(y(t)) = J1−α
(
d

dt
f(y(t))

)
= J1−α (f ′(y(t))y′(t)

)
= J1−α (af(y(t))y′(t)

)
.

Theorem 3.2. Suppose that f(y(t)) =
∑∞

k=0 F (k)tαk and y(t) =
∑∞

k=0 Y (k)tαk. Then we
have

F (k) =


eaY (0), k = 0,

a

k

k−1∑
r=0

(k − r)F (r)Y (k − r), k ≥ 1.

Now we consider the case of logarithmic nonlinearity. Let f(y(t)) = ln(a+ by(t), wherea
and b are constants.

Theorem 3.3. Suppose that f(y(t)) =
∑∞

k=0 F (k)tαk and y(t) =
∑∞

k=0 Y (k)tαk. Then we
have

F (k) =


ln(a+ bY (0)), k = 0,

1

k

k−1∑
r=0

(k − r)G(r)Y (k − r), k ≥ 1,

where

G(k) =


b

a+ bY (0)
, k = 0,

− b

a+ bY (0)

k−1∑
r=0

G(r)Y (k − r), k ≥ 1.

Let us consider f(y(t)) = sin(ay(t)) and g(f(t)) = cos(ay(t)), where a is a constant.

Theorem 3.4. Suppose that f(y(t)) =
∑∞

k=0 F (k)tαk, g(y(t)) =
∑∞

k=0G(k)tαk and y(t) =∑∞
k=0 Y (k)tαk. Then we have

F (k) =


sin(aY (0)), k = 0,

a

k

k−1∑
r=0

(k − r)G(r)Y (k − r), k ≥ 1,

G(k) =


cos(aY (0)), k = 0,

−a
k

k−1∑
r=0

(k − r)F (r)Y (k − r), k ≥ 1.
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Theorem 3.5. For the hyperbolic functions f(y(t)) = sinh(ay(t)) and g(ay(t)) = cosh(ay(t)),
where a is a consider, suppose that f(y(t)) =

∑∞
k=0 F (k)tαk, g(y(t)) =

∑∞
k=0G(k)tαk and

y(t) =
∑∞

k=0 Y (k)tαk. Then we have

F (k) =


sinh(aY (0)), k = 0,

a

k

k−1∑
r=0

(k − r)G(r)Y (k − r), k ≥ 1,

G(k) =


cosh(aY (0)), k = 0,

a

k

k−1∑
r=0

(k − r)F (r)Y (k − r), k ≥ 1.

3.2. Enhanced multistage generalized differential transform method. Let us consider the
following initial value problem of fractional order:

Dαy(t) = f(t, y(t)), t > 0, y(0) = y0. (3.1)

Applying the GDTM with y(t) =
∑∞

k=0 Y (k)tαk and f(t) =
∑∞

k=0 F (k)tαk we have the
recursive relation as follows

Γ(α(k + 1) + 1)

Γ(αk + 1)
Y (k + 1) = F (k), k = 0, 1, · · · . (3.2)

All GDTs Y (k) are given by solving the above recursive relation (3.2) with Y (0) = y0. GDTM
is based on the generalized Taylor series in Theorem 3.1. Thus it is clear that an accurate
approximation can be obtained near t = 0 if the series is expanded at t = 0. In order to obtain
a reliable approximation in a large domain Ω = (0, T ), the GDTM can be applied in each
subdomain Ωi = (ti, ti+1) where 0 = t0 < t1 < · · · < tN−1 < tN = T, ti = i × h and
h = T/N . Suppose that GDTM is applied to the problem (3.1) on Ωi with an initial condition
y(ti), that is,

Dαy(t) = f(t, y(t)), t ∈ Ωi. (3.3)

Then we have the analytic solution y(t) by taking the Riemann-Louville integral operator to
(3.3)

y(t) = y(ti) +
1

Γ(α)

∫ t

ti

(t− τ)α−1f(τ, y(τ))dτ. (3.4)

In the similar way, we have the analytic solution y(t) from (3.1)

y(t) = y(t0) +
1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ, y(τ))dτ.



288 B. JANG AND H. KIM

Then it can be rewritten as

y(t) = y(ti) +
1

Γ(α)

∫ t

ti

(t− τ)α−1f(τ, y(τ))dτ

+

i−1∑
j=0

1

Γ(α)

∫ tj+1

tj

{
(t− τ)α−1 − (ti − τ)α−1

}
f(τ, y(τ))dτ.

(3.5)

Comparing (3.4) with (3.5) it is clear that the analytic solution for the subdomain problem
(3.3) loses some information which was called as memory. Authors in [19] proposed the new
method in evaluating an initial condition y(ti+1) by using the piecewise linear interpolation of
f(t)

y(ti+1) ≈ y(t0) +
hα

Γ(α+ 2)

i+1∑
k=0

ak,i+1f(tk, sk,nk
(tk)), (3.6)

where sk,nk
(t) is the partial sum of y(t) in (3.4), sk,nk

(t) =
∑nk

i=0 Y (i)(t− tk)αi, and

ak,i+1 =

 iα+1 − (i− α)(i+ 1)α, if k = 0,
(i− k + 2)α+1 + (i− k)α+1 − 2(i− k + 1)α+1, if 1 ≤ k ≤ i,
1, if k = i+ 1.

As seen in (3.6) all values y(ti+1) are approximated by using the partial sum of GDTM in
each subdomain Ωi and numerical calculation of integration. In this work it is motivated to
obtain a new recursive relation of the GDTs which contain the memory terms in (3.5). Let us
first introduce the following calculation which is useful to derive the new recursive relation.

Lemma 3.6. For j = 0, 1, · · · , i− 1, we have∫ tj+1

tj

(ti − τ)α−1(τ − tj)αkdτ = hα(k+1)(i− j)α(k+1)B(
1

i− j
;αk + 1, α),

where B(x; a, b) is the incomplete beta function

B(x; , a, b) =

∫ x

0
ta−1(1− t)b−1dt.

Proof. Using a simple change of variable we have∫ tj+1

tj

(ti − τ)α−1(τ − tj)αkdτ = hα(k+1)

∫ 1

0
(i− j − s)α−1sαkds

= hα(k+1)(i− j)α−1
∫ 1

0
(1− s

i− j
)α−1sαkds

Then the proof is completed by the change of variable with
s

i− j
= t and the definition

incomplete beta function B(x; a, b). �
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Theorem 3.7. Suppose that y(t) is the solution of (3.1). Let yi(t) =
∑∞

k=0 Yi(k)(t−ti)αk and
fj(t, y(t)) =

∑∞
k=0 Fj(k)(t − tj)αk, j = 0, 1, · · · , i. Then we have the following recursive

relation with Yi(k) and Fi(k)

Yi(k+1) =



Γ(αk + 1)

Γ(α(k + 1) + 1)
Fi(k), i = 0,

Γ(αk + 1)

Γ(α(k + 1) + 1)
(Fi(k)− Fi−1(k)) +

2α(k+1)B(
1

2
;αk + 1, α)

Γ(α)
Fi−1(k), i = 1,

Γ(αk + 1)

Γ(α(k + 1) + 1)
(Fi(k)− Fi−1(k)) +

2α(k+1)B(
1

2
;αk + 1, α)

Γ(α)
Fi−1(k)

+

i−2∑
j=0

Fj(k)

Γ(α)

[
(i+ 1− j)α(k+1)B(

1

i+ 1− j
;αk + 1, α)

−(i− j)α(k+1)B(
1

i− j
;αk + 1, α)

]
, i ≥ 2,

where B(x; a, b) is the incomplete beta function.

Proof. For i ≥ 1, the value of y(ti+1) can be rewritten by

y(ti+1) = y(ti) +
1

Γ(α)

∫ ti+1

ti

(ti+1 − τ)α−1f(τ, y(τ))dτ

+
i−1∑
j=0

1

Γ(α)

∫ tj+1

tj

{
(ti+1 − τ)α−1 − (ti − τ)α−1

}
f(τ, y(τ))dτ.

(3.7)

Substituting the generalized Taylor series y(t) =
∑∞

k=0 Yi(k)(t−ti)αk, f(t, y(t)) =
∑∞

k=0 Fj(k)(t−
tj)

αk into (3.7) we have

∞∑
k=0

Yi(k)hαk = y(ti) +

∞∑
k=0

Fi(k)

{
1

Γ(α)

∫ ti+1

ti

(ti+1 − τ)α−1(τ − ti)αkdτ
}

+

∞∑
k=0


i−1∑
j=0

Fj(k)

Γ(α)

∫ tj+1

tj

{
(ti+1 − τ)α−1 − (ti − τ)α−1

}
(τ − tj)αkdτ

 .

(3.8)

Now we evaluate the integrals of the right hand side of (3.8). The property of the Riemann-
Liouville integral operator Jα gives the exact formulation of the first integral in (3.8):

1

Γ(α)

∫ ti+1

ti

(ti+1 − τ)α−1(τ − ti)αkdτ =
Γ(αk + 1)

Γ(α(k + 1) + 1)
hα(k+1). (3.9)
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Applying Lemma 3.6, the second integral of the right hand side of (3.8) can be written by∫ tj+1

tj

{
(ti+1 − τ)α−1 − (ti − τ)α−1

}
(τ − tj)αkdτ

=

[
(i+ 1− j)α(k+1)B(

1

i+ 1− j
;αk + 1, α)

−(i− j)α(k+1)B(
1

i− j
;αk + 1, α)

]
hα(k+1).

(3.10)

For j = i− 1, the incomplete beta function can be evaluated by

B(
1

i− j
;αk + 1, α) =

Γ(α)Γ(αk + 1)

Γ(α(k + 1) + 1)
. (3.11)

Substituting (3.9), (3.10) and (3.11) into (3.8) combined with y(ti) = Yi(0) and collecting
the coefficients of hα(k+1) the proof is completed. �

3.3. Approximation of generalized differential transforms. In the previous sections we dis-
cussed how to construct the generalized differential transform for several nonlinear forms and
the recursive relations of the generalized differential transforms in multistage approach. In the
MsGDTM, it is the most important to construct the corresponding recursive relations. For the
given following fractional differential equation

Dα
tiyi(t) = fi(t, yi(t)), t ∈ Ωi = (ti, ti+1) i ≥ 0,

it is easy to construct the recursive relation

Γ(α(k + 1) + 1)

Γ(αk + 1)
Yi(k + 1) = Fi(k), k = 0, 1, 2, · · · ,

where yi(t) =
∑∞

k=0 Yi(k)(t− ti)αk and fi(t) =
∑∞

k=0 Fi(k)(t− ti)αk. The above recursive
relation can be easily solved if Fi(k) are known. Suppose that fi(t, yi(t)) = fi,1(yi(t)) +
fi,2(t). For the nonlinear function fi,1(yi(t)), we discussed how to construct the corresponding
generalized differential transform. In fractional calculus, however, it is usually difficult to
find the fractional derivative for any function. Since the GDTs of fi,2(t) are obtained by the
generalized Taylor series

Fi,2(k) =
1

Γ(αk + 1)
[(Dα)kfi,2(t)]t=ti ,

it is not easy to find the GDTs for the fi,2(t). To overcome this difficulty we propose the
following method to find approximations of Fi,2(k). Suppose that fi,2(t) can be written by the
generalized Taylor series on Ωi = (ti, ti+1)

fi,2(t) =
∞∑
k=0

Fi,2(k)(t− ti)αk.
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FIGURE 1. Comparisons of maximum norm error between the exact and the
approximations by Taylor collocation approach; fi,2(t) = sin(2t) with the
degree n = 2, 3, 4 and 5 in (3.12).

In order to approximate fi,2(t) with the n−term partial sum we consider

fi,2(t) ≈
n∑
k=0

Fi,2(k)(t− ti)αk ≡ si,n(t). (3.12)

Since fi,2(ti) = Fi,2(0), there are n unknowns Fi,2(k), k = 1, · · · , n. To determine the
Fi,2(k) we consider the Taylor collocation approach. For the appropriate collocation points
tij , j = 1, · · · , n, we set fi,2(tij ) =

∑n
k=0 Fi,2(k)(tij − ti)

αk. Then we have the system
AF = B, where ap,q = (tip − ti)qα, bp = fi,2(tip) and F T = (Fi,2(1), · · · , Fi,2(n)). In Fig.
1, the maximum norm errors between the exact fi,2(t) = sin(2t) and the approximations by
the Taylor collocation approach with a number of mesh(5, 10, 20 and 40) at a degree α = 0.5.
Here, the collocation points are selected uniformly in each sub interval Ω̄i. It is shown that the
more accurate approximations are obtained when the degree is increasing and the size of mesh
is decreasing.
Remark There are many numerical methods to determine the GDTs Fi,2(k) such as the least
square. However, we employ the uniform collation method in each sub interval because of a
simple computational work.

4. NUMERICAL ILLUSTRATIONS

In this section we demonstrate numerical results of several nonlinear fractional differential
equations by using the proposed recurrence relations. To show the effectiveness of the pro-
posed method we also present the numerical results obtained by several methods such as the
fractional Adams-Bashforth-Moulton method(FABM)[4], the standard multistage generalized
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differential transform method(SGDTM)[22, 23], the standard multistage generalized differ-
ential transform method with memory(SGDTM-M)[19], the enhanced multistage generalized
differential transform method (EGDTM) which is given by Theorem 3.7 and the enhanced
multistage generalized differential transform method with memory(EGDTM-M). The method
with memory means that the initial condition y(ti+1) is approximated by (3.6) and the partial
sum sk,nk

(t) is obtained by the (standard or enhanced) GDTM. For all numerical examples, the
degree of partial sum in all GDTMs is set by n = 5. That is, yi(t) ≈

∑5
k=0 Yi(k)(t− ti)αk.

Example 1 Consider the following nonlinear fractional differential equation[10]:

Dαy(t) + λ1y(t) + λ2y
2(t) = sin(4t)− sin(t), t > 0, (4.1)

where 0 < α ≤ 1 and λi, i = 1, 2, subject to the initial condition y(0) = 5.0.
Applying the properties of GDTM to (4.1), we have the follow recurrence relation:

Γ(α(k + 1) + 1)

Γ(αk + 1)
Y (k + 1) + λ1Y (k) + λ2

k∑
r=0

Y (r)Y (k − r) = F (k), k ≥ 0,

where F (k) is the GDT of f(t) = sin(4t) − sin(t). Here the constants λi are set by λ1 =
0.25, λ2 = −0.05. The time step is chosen by h = 10−5 in FABM and h = 10−1 in all
GDTMs, respectively. In each subdomian, F (k) is approximated by using the collocation
method in the previous section.

The comparisons of numerical results are shown in Figure 2. For the large fractional orders
α = 0.9, 0.7, the results obtained by most GDTMs exept SGDTM are nearly the same and
close to the result by FABM. As α is getting smaller, however, numerical approximations by
SGDTM and SGDTM-M blow up in a short time. The EGDTM-M gives almost the same with
the result by FABM.

Example 2 Consider the following nonlinear fractional differential equation[18]:

Dαy(t) = e−y(t) + y(t), t > 0, (4.2)

where 0 < α ≤ 1, subject to the initial condition y(0) = 0.5
Applying the properties of GDTM in Theorem 3.1 and 3.2 to (4.2), we have the following

recurrence relation:
Γ(α(k + 1) + 1)

Γ(αk + 1)
Y (k + 1) = F (k) + Y (k), k ≥ 0,

where F (k) is the GDT of ey(t) and is given by as follows

F (k) =
1

k

k−1∑
r=0

(k − r)F (r)Y (k − r), k ≥ 1. (4.3)

From the initial condition y(0) = 0, we have Y (0) = 0 and F (0) = eY (0).
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FIGURE 2. Comparisons of approximate solutions with α =
(a)0.9, (b)0.7, (c)0.5 and (d)0.3 from top to bottom

TABLE 1. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.9 in Example
2

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.649371 0.649370 0.649334 0.649370 0.649334

0.3 0.927463 0.979716 0.930360 0.927889 0.927654

0.5 1.226325 1.369327 1.235908 1.227390 1.226824

0.7 1.563724 1.843697 1.584128 1.565723 1.564655

0.9 1.955064 2.435985 1.991838 1.958409 1.956606

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 0.787364 0.894235 0.787994 0.787406 0.787363

0.4 1.073037 1.373282 1.074893 1.073139 1.073038

0.6 1.389262 1.986059 1.393022 1.389450 1.389268

0.8 1.751642 2.800329 1.758230 1.751953 1.751653

1.0 2.176198 3.909788 2.186879 2.176683 2.176217
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TABLE 2. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.7 in Example
2

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.759755 0.759726 0.758609 0.759726 0.758609

0.3 1.120497 1.395246 1.146719 1.123690 1.120122

0.5 1.482904 2.293112 1.565537 1.490042 1.483219

0.7 1.885367 3.646766 2.058448 1.898037 1.886619

0.9 2.351559 5.755351 2.62769 2.372091 2.354152

t yh SGDTM SGDTM-M EGDTM EGDTM-M
0.2 0.944264 1.765056 0.951892 0.944619 0.944238

0.4 1.298381 4.381588 1.318474 1.299112 1.298363

0.6 1.677574 10.595925 1.716414 1.678822 1.677564

0.8 2.109090 25.612480 2.175534 2.111068 2.109091

1.0 2.615695 61.910497 2.721971 2.618702 2.615712

TABLE 3. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.5 in Example
2

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.956630 0.955848 0.950455 0.955848 0.950455

0.3 1.428010 2.352869 1.599497 1.441996 1.426029

0.5 1.884920 5.229080 2.452074 1.913593 1.884701

0.7 2.392817 11.541742 3.666449 2.441988 2.395139

0.9 2.986370 25.473154 5.436456 3.064643 2.992272

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 1.202300 7.647129 1.266979 1.204033 1.202172

0.4 1.652715 78.712858 1.815157 1.655913 1.652670

0.6 2.130147 2.444142 2.135379 2.130197

0.8 2.676929 3.220666 2.685048 2.677112

1.0 3.325064 4.206744 3.337233 3.325436
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For several fractional orders α = 0.9, 0.7 and 0.5, the comparisons of numerical results are
listed in Table 1, 2 and 3. The time step is set by h = 10−7 in FABM. In all GDTMs, two
time steps are chosen by h = 10−1 and 10−2. All numerical results are shown at two different
sets of points; {0.1, · · · , 0.9}, {0.2, · · · , 1.0}. With a fine time step h = 10−7, we assume
that the numerical results by FABM are almost the exact solutions. As α is getting smaller,
the numerical results by the SGDTM and SGDTM-M are more inaccurate. However, for all α,
the two EGDTMs give very accurate numerical results. Especially, the EGDTM-M gives the
most accurate numerical results. A close observation of the numercal results by EGDTM and
EGDTM-M compared with the ones by FABM reveals that the errors are reduced in one more
decimal place for all α. It is worth noting that EGDTM-M uses the time step h = 10−2 and
their numerical results agree with the ones by FABM in three decimal places.

Example 3 Consider the following nonlinear fractional differential equation:

Dαy(t) = y(t)− y(t) ln y(t), t > 0, (4.4)

where 0 < α ≤ 1, subject to the initial condition y(0) = 1.
Applying the properties of GDTM in Theorem 3.1 and 3.3 to (4.4), we have the following

recurrence relation:

Γ(α(k + 1) + 1)

Γ(αk + 1)
Y (k + 1) = Y (k)−

k∑
r=0

Y (r)F (k − r), k ≥ 0,

where F (k) is the GDT of ln y(t) and is given as follows

F (k) =
1

k

k−1∑
r=0

(k − r)G(r)Y (k − r), k ≥ 1.

and

G(s) = − 1

Y (0)

s−1∑
r=0

G(r)Y (s− r), s ≥ 1.

From the initial condition y(0) = 0, we have Y (0) = 1, F (0) = ln(Y (0)) = 0 and G(0) =
1/Y (0) = 1, respectively. For α = 0.9, 0.7 and 0.5, the comparisons of numerical results are
listed in Table 4, 5 and 6. For all α, the numerical results by SGDTM have the large errors. For
small α, they are blowing up in a short time. But all other numerical methods gives very close
approximations. However, it is also observed that EGDTM-M gives the best approximations
for all α.

Example 4 Consider the following nonlinear fractional differential equation:

Dαy(t) = y(t)e−y(t) + λ1 cos(y(t)) + λ2, t > 0, (4.5)

where 0 < α ≤ 1, subject to the initial condition y(0) = 0.5. λ1 = 2, λ2 = −1. Applying
the properties of GDTM in Theorem 3.2 and 3.4 to (4.5), we have the following recurrence
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TABLE 4. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.9 in Example
3

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 1.130479 1.130478 1.130335 1.130479 1.130334

0.3 1.344291 1.383388 1.343574 1.344253 1.344030

0.5 1.529469 1.615847 1.528442 1.529354 1.529183

0.7 1.690853 1.820994 1.689695 1.690642 1.690529

0.9 1.830688 1.996474 1.829532 1.830381 1.830479

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 1.241643 1.324116 1.241630 1.241634 1.241641

0.4 1.440025 1.620346 1.440005 1.440000 1.440022

0.6 1.612986 1.873568 1.612962 1.612946 1.612983

0.8 1.763334 2.079830 1.763309 1.763279 1.763331

1.0 1.893185 2.242099 1.893162 1.893120 1.893184

TABLE 5. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.7 in Example
3

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 1.217061 1.217033 1.216744 1.217033 1.216744

0.3 1.451052 1.615579 1.4462721 1.450510 1.450835

0.5 1.617347 1.938792 1.611429 1.616336 1.617246

0.7 1.746556 2.181436 1.740452 1.745224 1.746541

0.9 1.850559 2.354905 1.844718 1.849043 1.850601

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 1.346483 1.791094 1.346256 1.346405 1.346476

0.4 1.539956 2.283125 1.539659 1.539817 1.539953

0.6 1.685666 2.526836 1.685355 1.685490 1.685664

0.8 1.801214 2.636395 1.800917 1.801019 1.801213

1.0 1.895317 2.683673 1.895044 1.895113 1.895316
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TABLE 6. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.5 in Example
3

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 1.343828 1.343272 1.344184 1.343272 1.344183

0.3 1.560016 1.905574 1.540004 1.58480 1.560406

0.5 1.686500 2.265874 1.665304 1.684451 1.686848

0.7 1.776320 2.473694 1.755858 1.774125 1.776608

0.9 1.845368 2.587958 1.826130 1.843191 1.845602

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 1.470799 2.437412 1.468388 1.470504 1.47073

0.4 1.629524 2.685293 1.626965 1.629190 1.629511

0.6 1.734685 2.714556 1.732225 1.734353 1.734667

0.8 1.812875 2.717863 1.810572 1.812557 1.812854

1.0 1.874539 2.718234 1.872401 1.874239 1.874516

relation:

Γ(α(k + 1) + 1)

Γ(αk + 1)
Y (k + 1) =

n∑
r=0

Y (r)F1(k − r) + λ1F2(k) + λ2δ(k), k ≥ 0,

where F (k) is the GDT of ln y(t) and is given as follows

F1(k) = −1

k

k−1∑
r=0

(k − r)F1(r)Y (k − r), k ≥ 1.

and

F2(k) = −1

k

k−1∑
r=0

(k − r)G2(r)Y (k − r), k ≥ 1,

G2(k) =
1

k

k−1∑
r=0

(k − r)F2(r)Y (k − r), k ≥ 1.

From the initial condition y(0) = 0., we have Y (0) = 0.5, F1(0) = e−Y (0), F2(0) = − cos(Y (0))
and G2(0) = sin(Y (0)), respectively. For α = 0.9, 0.7 and 0.5, the comparisons of numerical
results are listed in Table 7, 8 and 9. In this example, the SGDTM gives inaccurate numerical
apporoximations for all α. Even though the numerical results by SGDTM are not blowing up
for α = 0.5 which are shown in the previous example, it converges to the wrong appromxations
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TABLE 7. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.9 in Example
4

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.631075 0.623627 0.631612 0.631074 0.631112

0.3 0.812286 0.830642 0.810220 0.811832 0.812445

0.5 0.935241 0.979059 0.929292 0.934554 0.935603

0.7 1.019272 1.078052 1.010588 1.018537 1.019733

0.9 1.077082 1.141454 1.066942 1.076401 1.077548

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 0.730662 0.799228 0.729789 0.730607 0.730665

0.4 0.879623 0.995300 0.877827 0.879536 0.879627

0.6 0.981216 1.109492 0.978885 0.981122 0.981221

0.8 1.050835 1.172457 1.048312 1.050746 1.050840

1.0 1.098973 1.206306 1.096481 1.098896 1.098978

TABLE 8. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.7 in Example
4

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.705789 0.685727 0.711093 0.705873 0.708152

0.3 0.872581 0.956617 0.856594 0.870899 0.874362

0.5 0.961191 1.105143 0.934942 0.959380 0.962495

0.7 1.016447 1.178759 0.985826 1.014845 1.017375

0.9 1.053915 1.213785 1.021873 1.052572 1.054578

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 0.804740 1.072371 0.797543 0.804443 0.804775

0.4 0.922656 1.211311 0.912294 0.922362 0.922678

0.6 0.991719 1.238148 0.980452 0.991470 0.991733

0.8 1.036841 1.243155 1.025631 1.036638 1.036851

1.0 1.068395 1.244083 1.057633 1.068230 1.068402

at t = 1.0. The EGDTM-M with h = 10−2 has the best approximations which agree to the
four decimal places.



ENHANCED SEMI-ANALYTIC METHOD FOR FRACTIONAL DE 299

TABLE 9. Comparison of the numerical results by the MsGDTM(top:(h =
10−1), bottom: (h = 10−2)) and FABM(h = 10−7) for α = 0.5 in Example
4

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.1 0.794293 0.756083 0.818586 0.797983 0.805632

0.3 0.916474 1.057309 0.882245 0.914413 0.919256

0.5 0.972229 1.174639 0.928288 0.970404 0.973746

0.7 1.006537 1.218496 0.959699 1.005039 1.007513

0.9 1.030463 1.234764 0.982983 1.029199 1.031123

t FABM SGDTM SGDTM-M EGDTM EGDTM-M
0.2 0.870733 1.227964 0.846505 0.870145 0.870814

0.4 0.948300 1.244019 0.921004 0.947881 0.948322

0.6 0.991116 1.244289 0.963630 0.990801 0.991119

0.8 1.019446 1.244294 0.992535 1.019197 1.019441

1.0 1.040013 1.244294 1.013902 1.039808 1.040003

5. CONCLUSION

In this work we proposed a new scheme to obtain an accrurate numerical approximation for
the nonlinear differential equations of the fractional order. The proposed method is based on the
generalized Taylor series which is called the generalized differential transform method(GDTM).
The conventional GDTM was applied in each sub-domain to obtain the accurate approxima-
tions in whole domain. However, it has been shown that this approach does not contain the
effect of memory which is the main characteristic in the diffential equations of the fractional
order. We derive a new recursive relation in GDTM, which contains the effect of memory.
From the several illustrative examples, it is shown that the proposed method has the promising
numerical results with low computational cost.
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