• Title/Summary/Keyword: Taylor 전개

Search Result 54, Processing Time 0.017 seconds

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.

Performance of cross-eye jamming due to amplitude mismatch: Comparison of performance analysis of angle tracking error (진폭비 불일치에 의한 cross-eye 재밍 성능: 각도 추적 오차 성능 분석 비교)

  • Kim, Je-An;Kim, Jin-Sung;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.51-56
    • /
    • 2021
  • In this paper, performance degradation in the cross-eye jamming due to amplitude mismatch of two jamming antennas is considered. The mismatch of the amplitude ratio is modeled as a random variable with a normal distribution of the difference between the actual amplitude ratio and the nominal amplitude ratio due to mechanical defects. In the proposed analytic performance analysis, the first-order Taylor series expansion and the second-order Taylor series expansion is adopted. Performance measure of the cross-eye jamming is the mean square difference (MSD). The analytically derived MSD is validated by comparing the analytically derived MSD with the first-order Taylor series-based simulation-based MSD and the second-order Taylor series-based simulation-based MSD. It shows that the analysis-based MSD is superior to the Monte-Carlo-based MSD, which has a high calculation cost.

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Variations and Series Expansions of the Symbolic Multiple-Valued Logic functions (기호 다치 논리함수와 그 변화 및 전개)

  • 이성우;정환묵
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 1983
  • Generally, multiple-valued logic algebra is based on the number system of modulo-M. In this paper, characters a, b, c‥… each of them represents the independent state, are regarded as the elements of the symbolic multiple-valued logic. By using the set theory, the symbolic multiple - valued logic and their functions are defined. And Varation for the symbolic logic function due to the variation of a variable and their properties are suggested and analized. With these variations, the MacLaurin's and Taylor's Series expansions of the symbolic logic functions are proposed and proved.

  • PDF

Analytical Solution for Long Waves on Axis-Symmetric Topographies (축 대칭 지형 위를 전파하는 장파의 해석해)

  • Jung, Tae-Hwa;Lee, Changhoon;Cho, Yong-Sik;Lee, Jin-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.413-419
    • /
    • 2008
  • In this study, we develop analytical solutions for long waves propagating over several types of axis-symmetric topographies where the water depth varies in an arbitrary power of radial distance. The first type is a cylindrical island mounted on a shoal. The second type is a circular island. To get the solution, the methods of separation of variables, Taylor series expansion and Frobenius series are used. Developed analytical solutions are validated by comparing with previously developed analytical solutions. We also investigate various cases with different incident wave periods, radii of the shoal, and the powers of radial distance.

Performance Analysis of Monopulse System Based on Second-Order Taylor Expansion of Two Variables in the Presence of an Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 2변수 2차 테일러 전개 기반 분석)

  • Ryu, Kyu-Tae;Ham, Hyeong-Woo;Lee, Joon-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, it is shown how the performance of the monopulse algorithm in additive noise is evaluated. In the previous study, the performance analysis of the amplitude-comparison monopulse algorithm was conducted via the first-order and second-order Taylor expansion of four variables. By defining two new random variables from the four variables, it is shown that computational complexity associated with two random variables is much smaller than that associated with four random variables. Performance in terms of mean square error is analyzed from Monte-Carlo simulation. The scheme proposed in this paper is more efficient than that suggested in the previous study in terms of computational complexity. The expressions derived in this study can be utilized in getting analytic expressions of the mean square errors.

A Study on the Acceleration and Deceleration Control of Free-Form Surfaces (자유곡면의 가감속 제어에 관한 연구)

  • Baek, Dae Kyun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.745-751
    • /
    • 2016
  • This paper presents the acceleration and deceleration control of free-form surfaces. A rapid variation of acceleration (or Deceleration) drives the system into a machine shock, resulting in the inaccuracy of the path control of the NURBS curve. The pattern of acceleration control can be established using the curvature of the NURBS curve. The curvature can be easily calculated from the first and second derivative of the NURBS curve used in Taylor's expansion for NURBS interpolation. However, the derivatives are not used in the recursive method for NURBS interpolation. Hence, we attempted the difference-derivatives for calculating the NURBS curvature. Both, Taylor's expansion and the recursive method, are used jointly for controlling the acceleration in the same interpolation algorithm.

Analytic Linearization of Symbolic Nonlinear Equations (기호 비선형 방정식의 해석적 선형화)

  • Song, Sung-Jae;Moon, Hong-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.145-151
    • /
    • 1995
  • The first-order Taylor series expansion can be evaluated analytically from the formulated symbolic nonlinear dynamic equations. A closed-form linear dynamic euation is derived about a nominal trajectory. The state space representation of the linearized dynamics can be derived easily from the closed-form linear dynamic equations. But manual symbolic expansion of dynamic equations and linearization is tedious, time-consuming and error-prone. So it is desirable to manipulate the procedures using a computer. In this paper, the analytic linearization is performed using the symbolic language MATHEMATICA. Two examples are given to illustrate the approach anbd to compare nonlinear model with linear model.

  • PDF

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.