Browse > Article
http://dx.doi.org/10.15207/JKCS.2022.13.01.043

Performance Analysis of Monopulse System Based on Second-Order Taylor Expansion of Two Variables in the Presence of an Additive Noise  

Ryu, Kyu-Tae (Department of Electrical Engineering, Sejong University)
Ham, Hyeong-Woo (Department of Electrical Engineering, Sejong University)
Lee, Joon-Ho (Department of Electrical Engineering, Sejong University)
Publication Information
Journal of the Korea Convergence Society / v.13, no.1, 2022 , pp. 43-50 More about this Journal
Abstract
In this paper, it is shown how the performance of the monopulse algorithm in additive noise is evaluated. In the previous study, the performance analysis of the amplitude-comparison monopulse algorithm was conducted via the first-order and second-order Taylor expansion of four variables. By defining two new random variables from the four variables, it is shown that computational complexity associated with two random variables is much smaller than that associated with four random variables. Performance in terms of mean square error is analyzed from Monte-Carlo simulation. The scheme proposed in this paper is more efficient than that suggested in the previous study in terms of computational complexity. The expressions derived in this study can be utilized in getting analytic expressions of the mean square errors.
Keywords
Amplitude-comparison monopulse radar; Taylor expansion; Tracking radar; Monte-Carlo; Mean square error(MSE);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. R. Park, I. K. Nam & S. U. Noh. (2018). Modeling and simulation for the investigation of radar responses to electronic attacks in electronic warfare environments. Security and Communication Networks, 2018(18), 1-13. DOI : 10.1155/2018/3580536   DOI
2 Normal distribution. Wikipedia. https://en.wikipedia.org/wiki/Normal_distribution
3 A. I. Leonov & K. I. Fomichev. (1986). Monopulse radar. Norwood, MA : Artech House.
4 D. R. Rhodes. (1980). Introduction to monopulse. Norwood, MA : Artech House.
5 B. R. Mahafza. (2013). Radar systems analysis and design using MATLAB. London : Chapman & Hall.
6 M. A. Richards, J. A. Scheer & W. A. Holm. (2008). Principles of modern radar: basic principles. New York : SciTech Publishing Inc.
7 R. C. Davis, L. E. Brennan & L. S. Reed. (1976). Angle estimation with adaptive arrays in external noise fields. IEEE Transactions on Aerospace and Electronic Systems, AES-12(2), 179-186. DOI : 10.1109/TAES.1976.308293   DOI
8 M. J. Kim, D. S. Hong & S. S. Park. (2020). A study on the amplitude comparison monopulse algorithm. Applied Sciences, 10(11). DOI : 10.3390/app10113966   DOI
9 D. J. An & J. H. Lee. (2020). Performance analysis of amplitude comparison monopulse direction-of-arrival estimation. Applied Sciences, 10(4). DOI : 10.3390/app10041246   DOI
10 D. J. An & J. H. Lee. (2018). Performance of amplitude comparison monopulse radar. The Journal of Korean Institute of Electromagnetic Engineering and Science, 29(12), 969-975. DOI : 10.5515/KJKIEES.2018.29.12.969   DOI
11 Mean squared error. Wikipedia. https://en.wikipedia.org/wiki/Mean_squared_error
12 S. M. Sherman & D. K. Barton. (1984). Monopulse principles and techniques. Norwood, MA : Artech House.
13 Y. J. Han, J. W. Kim, S. R. Park & S. U. Noh. (2017). An Investigation into the monopulse radar using Tx-Rx simulator in electronic warfare settings. Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, 705-706. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07125974
14 Taylor series. Encyclopedia of Mathematics. https://encyclopediaofmath.org/wiki/Taylor_series
15 Sum of normally distributed random variables. Wikipedia. https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
16 H. W. Ham & J. H. Lee (2021). Improvement of performance analysis of amplitude-comparison monopulse algorithm in the presence of an additive noise. Electronics 2021, 10(21). DOI : 10.3390/electronics10212649   DOI