• 제목/요약/키워드: Target tracking filter

검색결과 345건 처리시간 0.035초

다중 UAV에 의해 획득된 거리 차 측정치를 이용한 순환 선형 강인 이동 표적추적 필터 (Recursive Linear Robust Moving Target Tracking Filter Using Range Difference Information Measured by Multiple UAVs)

  • 이혜경;나원상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1738-1739
    • /
    • 2011
  • In this paper, the range difference based the moving target tracking problem using multiple UAVs is solved within the new framework of linear robust state estimation. To do this, the relative kinematics is modeled as an uncertain linear system containing stochastic parametric uncertainties in its measurement matrix. Applying the non-conservative robust Kalman filter for the uncertain system, a quasi-optimal linear target tracking filter is designed. For its recursive linear filter structure, the proposed method can ensure the fast convergence and reliable target tracking performance. Moreover, it is suitable for real-time applications using multiple UAVs.

  • PDF

A Study of Optimization of α-β-γ-η Filter for Tracking a High Dynamic Target

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.297-302
    • /
    • 2017
  • The tracking filter plays a key role in accurate estimation and prediction of maneuvering the vessel's position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The ${\alpha}-{\beta}-{\gamma}$ filter is one of the special cases of the general solution provided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity, and acceleration for the nth observation, and predicts the next position and velocity. Although found to track a maneuvering target with good accuracy than the constant velocity ${\alpha}-{\beta}$ filter, the ${\alpha}-{\beta}-{\gamma}$ filter does not perform impressively under high maneuvers, such as when the target is undergoing changing accelerations. This study aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The ${\alpha}-{\beta}-{\gamma}$ filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration to improve the filter's performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, ${\alpha}-{\beta}-{\gamma}-{\eta}$ algorithm as compared to the constant acceleration model, ${\alpha}-{\beta}-{\gamma}$ in terms of error reduction and stability of the filter during target maneuver.

Poisson-Type 기동표적의 시스템 모델링 오류에 대한 추적 필터의 성능 해석 (Performance Analysis of the Tracking Filter for a Maneuvering Target of Poisson-Type Subject To System Modeling Error)

  • 오상병;김상진;임상석
    • 한국항행학회논문지
    • /
    • 제7권2호
    • /
    • pp.217-226
    • /
    • 2003
  • 근래에 Poisson 형의 점프 프로세스를 이용하여 표적의 기동 운동을 모델링하고 이것을 이용한 반복형 최소 분산 선형 필터가 제안되었다. 이 필터에서는 기동 표적의 모델링에 사용한 점프의 상태천이 파라미터가 미리부터 필터에 알려져 있다고 가정하였는데 실제는 이것을 모르는 경우가 많다. 본 논문에서는 이러한 기동 추적과정에 수반되는 모델링 오류가 제안된 추적필터의 성능에 어떤 영향을 미치는지 고려한다. 정성적인 분석을 위해서 상태천이 파라미터를 실제와 다른 값을 사용하고, Monte-Carlo 시뮬레이션을 통해 필터의 성능을 해석한다.

  • PDF

Target Birth Intensity Estimation Using Measurement-Driven PHD Filter

  • Zhang, Huanqing;Ge, Hongwei;Yang, Jinlong
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.1019-1029
    • /
    • 2016
  • The probability hypothesis density (PHD) filter is an effective means to track multiple targets in that it avoids explicit data associations between the measurements and targets. However, the target birth intensity as a prior is assumed to be known before tracking in a traditional target-tracking algorithm; otherwise, the performance of a conventional PHD filter will decline sharply. Aiming at this problem, a novel target birth intensity scheme and an improved measurement-driven scheme are incorporated into the PHD filter. The target birth intensity estimation scheme, composed of both PHD pre-filter technology and a target velocity extent method, is introduced to recursively estimate the target birth intensity by using the latest measurements at each time step. Second, based on the improved measurement-driven scheme, the measurement set at each time step is divided into the survival target measurement set, birth target measurement set, and clutter set, and meanwhile, the survival and birth target measurement sets are used to update the survival and birth targets, respectively. Lastly, a Gaussian mixture implementation of the PHD filter is presented under a linear Gaussian model assumption. The results of numerical experiments demonstrate that the proposed approach can achieve a better performance in tracking systems with an unknown newborn target intensity.

Structurally Enhanced Correlation Tracking

  • Parate, Mayur Rajaram;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4929-4947
    • /
    • 2017
  • In visual object tracking, Correlation Filter-based Tracking (CFT) systems have arouse recently to be the most accurate and efficient methods. The CFT's circularly shifts the larger search window to find most likely position of the target. The need of larger search window to cover both background and object make an algorithm sensitive to the background and the target occlusions. Further, the use of fixed-sized windows for training makes them incapable to handle scale variations during tracking. To address these problems, we propose two layer target representation in which both global and local appearances of the target is considered. Multiple local patches in the local layer provide robustness to the background changes and the target occlusion. The target representation is enhanced by employing additional reversed RGB channels to prevent the loss of black objects in background during tracking. The final target position is obtained by the adaptive weighted average of confidence maps from global and local layers. Furthermore, the target scale variation in tracking is handled by the statistical model, which is governed by adaptive constraints to ensure reliability and accuracy in scale estimation. The proposed structural enhancement is tested on VTBv1.0 benchmark for its accuracy and robustness.

기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터 (DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.118-121
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seliously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

수정된 가변차원 입력추정 필터를 이용한 기동표적 추적 (Maneuvering Target Tracking Using Modified Variable Dimension Filter with Input Estimation)

  • 안병완;최재원;황태현;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.976-983
    • /
    • 2002
  • We presents a modified variable dimension filter with input estimation for maneuvering target tracking. The conventional variable dimension filter with input estimation(VDIE) consists of the input estimation(IE) technique and the variable dimension(VD) filter. In the VDIE, the IE technique is used for estimation of a maneuver onset time and its magnitude in the least square sense. The detection of the maneuver is declared according to the estimated magnitude of the maneuver. The VD filter structure is applied for the adaptation to the maneuver of the target after compensating the filter parameter with respect to the estimated maneuver when the detection of the maneuver is declared. The VDIE is known as one of the best maneuvering target tracking filter based on a single filter. However, it requires too much computational burden since the IE technique is performed at every sampling instance and thus it is computationally inefficient. We propose another variable dimension filter with input estimation named 'Modified VDIE' which combines VD filter with If technique. Modified VDIE has less computational load than the original one by separating maneuver detection and input estimation. Simulation results show that the proposed VDIE is more efficient and outperforms in terms of computational load.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

해석적 방법에 의한 PDAF의 성능예측 분석 (Performance Prediction Analysis for the PDA Filter)

  • 김국민;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.563-568
    • /
    • 2003
  • In this paper, We propose a target tracking filter which utilizes the PDA for data association in a clutter environment and also propose an analytic solution for ideal filter covariance which accounts for all the possible events in the PDA. Monte Carlo simulation for the proposed filter in a clutter environment indicates that the proposed analytic solution forms the true error covariance of the PDA Filter.

커널상관필터를 이용한 소형무인기 추적 (Small UAV tracking using Kernelized Correlation Filter)

  • 선선구;이의혁
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.27-33
    • /
    • 2020
  • 최근 영상 센서를 이용한 물체 탐지 및 추적 기술은 많은 응용분야에서 그 사용이 널리 확대되고 있다. 민수 산업 분야에서 로보틱스, 비디오 감시정찰 및 차량 네비게이션 분야와 같은 영역으로 널리 확대되고 있는 추세이다. 특히, 드론의 사용이 널리 확대되고 있는 현 상황에서 공항, 원자력 발전소 및 중요시설에서는 불법적으로 운용되고 있는 소형무인기를 탐지 및 추적하여 격추시키는 시스템 개발이 매우 중요하다. 최근 영상센서를 활용한 물체 추적 방법으로 이목을 끌고 있는 방법이 학습에 기반을 둔 KCF 방법이다. 그러나 이 방법은 추적 기간이 길어지면 추적 과정에서 표적의 드리프트가 발생하는 문제점이 있다. 비디오 감시정찰 분야에서 표적의 드리프트 문제를 줄이기 위해 우리는 KCF와 적응 임계치설정 및 칼만필터를 적용하여 표적 드리프트 문제를 줄일 수 있는 방법을 제안하였다. 실험을 통해서 실제 무인비행체가 운용되는 실제 환경에서 획득된 흑백 비디오 영상에 제안한 방법과 기존의 KCF 알고리즘을 비교하여 제안한 방법의 우수성을 입증하였다.