• Title/Summary/Keyword: Target Detection and Tracking

Search Result 234, Processing Time 0.026 seconds

Performance analysis of automatic target tracking algorithms based on analysis of sea trial data in diver detection sonar (수영자 탐지 소나에서의 해상실험 데이터 분석 기반 자동 표적 추적 알고리즘 성능 분석)

  • Lee, Hae-Ho;Kwon, Sung-Chur;Oh, Won-Tcheon;Shin, Kee-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.415-426
    • /
    • 2019
  • In this paper, we discussed automatic target tracking algorithms for diver detection sonar that observes penetration forces of coastal military installations and major infrastructures. First of all, we analyzed sea trial data in diver detection sonar and composed automatic target tracking algorithms based on track existence probability as track quality measure in clutter environment. In particular, these are presented track management algorithms which include track initiation, confirmation, termination, merging and target tracking algorithms which include single target tracking IPDAF (Integrated Probabilistic Data Association Filter) and multitarget tracking LMIPDAF (Linear Multi-target Integrated Probabilistic Data Association Filter). And we analyzed performances of automatic target tracking algorithms using sea trial data and monte carlo simulation data.

Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking

  • Gao, Li;Ma, Yongjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5095-5111
    • /
    • 2016
  • The Probability Hypothesis Density (PHD) filter is a suboptimal approximation and tractable alternative to the multi-target Bayesian filter based on random finite sets. However, the PHD filter fails to track newborn targets when the target birth intensity is unknown prior to tracking. In this paper, a dual detection-guided newborn target intensity PHD algorithm is developed to solve the problem, where two schemes, namely, a newborn target intensity estimation scheme and improved measurement-driven scheme, are proposed. First, the newborn target intensity estimation scheme, consisting of the Dirichlet distribution with the negative exponent parameter and target velocity feature, is used to recursively estimate the target birth intensity. Then, an improved measurement-driven scheme is introduced to reduce the errors of the estimated number of targets and computational load. Simulation results demonstrate that the proposed algorithm can achieve good performance in terms of target states, target number and computational load when the newborn target intensity is not predefined in multi-target tracking systems.

Maneuvering detection and tracking in uncertain systems (불확정 시스템에서의 기동검출 및 추적)

  • Yoo, K. S.;Hong, I. S.;Kwon, O. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.120-124
    • /
    • 1991
  • In this paper, we consider the maneuvering detection and target tracking problem in uncertain linear discrete-time systems. The maneuvering detection is based on X$^{2}$ test[2,71, where Kalman filters have been utilized so far. The target tracking is performed by the maneuvering input compensation based on a maximum likelihood estimator. KF has been known to diverge when some modelling errors exist and fail to detect the maneuvering and to track the target in uncertain systems. Thus this paper adopt the FIR filter[l], which is known to be robust to modelling errors, for maneuvering detection and target tracking problem. Various computer simulations show the superior performance of the FIR filter in this problem.

  • PDF

Fundamental research of the target tracking system using a CMOS vision chip for edge detection (윤곽 검출용 CMOS 시각칩을 이용한 물체 추적 시스템 요소 기술 연구)

  • Hyun, Hyo-Young;Kong, Jae-Sung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • In a conventional camera system, a target tracking system consists of a camera part and a image processing part. However, in the field of the real time image processing, the vision chip for edge detection which was made by imitating the algorithm of humanis retina is superior to the conventional digital image processing systems because the human retina uses the parallel information processing method. In this paper, we present a high speed target tracking system using the function of the CMOS vision chip for edge detection.

Maneuvering Target Tracking in Uncertain Parameter Systems Using RoubustH_\inftyFIR Filters (견실한$H_\infty$FIR 필터를 이용한 불확실성 기동표적의 추적)

  • Yoo, Kyung-Sang;Kim, Dae-Woo;Kwon, Oh-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • This paper deals with the maneuver detection and target tracking problem in uncertain parameter systems using a robust{{{{ { H}_{ } }}}} FIR filter to improve the unacceptable tracking performance due to the parametr uncertainty. The tracking filter used in the current paper is based on the robust{{{{ { H}_{ } }}}} FIR filter proposed by Kwon et al. [1,2] to estimate the state signal in uncertain systems with parameter uncertainty, and the basic scheme of the proposed method is the input estimation approach. Tracking performance of the maneuver detection and target tracking method proposed is compared with other techniques, Bogler allgorithm [4] and FIR tracking filter [2], via some simulations to examplify the good tracking performance of the proposed method over other techniques.

  • PDF

Robust Generalized Labeled Multi-Bernoulli Filter and Smoother for Multiple Target Tracking using Variational Bayesian

  • Li, Peng;Wang, Wenhui;Qiu, Junda;You, Congzhe;Shu, Zhenqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.908-928
    • /
    • 2022
  • Multiple target tracking mainly focuses on tracking unknown number of targets in the complex environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) filter has been shown to be an effective approach and attracted extensive attention. However, in the scenarios where the clutter rate is high or measurement-outliers often occur, the performance of the GLMB filter will significantly decline due to the Gaussian-based likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust GLMB filter and smoother to improve the tracking performance in the scenarios with high clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T distribution variational Bayesian (TDVB) filtering technology is employed to update targets' states. Then, The likelihood weight in the tracking process is deduced again. Finally, a trajectory smoothing method is proposed to improve the integrative tracking performance. The proposed method are compared with recent multiple target tracking filters, and the simulation results show that the proposed method can effectively improve tracking accuracy in the scenarios with high clutter rate, low detection rate and measurement-outliers. Code is published on GitHub.

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Object Detection Using Predefined Gesture and Tracking (약속된 제스처를 이용한 객체 인식 및 추적)

  • Bae, Dae-Hee;Yi, Joon-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.43-53
    • /
    • 2012
  • In the this paper, a gesture-based user interface based on object detection using predefined gesture and the tracking of the detected object is proposed. For object detection, moving objects in a frame are computed by comparing multiple previous frames and predefined gesture is used to detect the target object among those moving objects. Any object with the predefined gesture can be used to control. We also propose an object tracking algorithm, namely density based meanshift algorithm, that uses color distribution of the target objects. The proposed object tracking algorithm tracks a target object crossing the background with a similar color more accurately than existing techniques. Experimental results show that the proposed object detection and tracking algorithms achieve higher detection capability with less computational complexity.

A Study of Image Target Detection and Tracking for Robust Tracking in an Occluded Environment (표적의 부분가림이 존재하는 환경에서 견실한 추적을 위한 영상 표적 탐지, 추적 알고리듬 연구)

  • Kim, Yong;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.982-990
    • /
    • 2010
  • In a target tracking system using image information from a CCD (Charged Couple Device) or an IIR (Imaging Infra-red) sensor, occluded targets can result in track losses. If the target is occlued by background objects such as buildings or trees, probability of track existence will be reduced sharply and track will be terminated due to track maintenance algorithms. This paper proposes data association algorithm based on target existence for the robust tracking performance. we suggest the HPDA (Highest Probability Data Association) algorithm based on target existence and the tracking performance is compared with the established method based on target perceivability. Image tracking simulation that utilizes virtual 3D images and real IR images is employed to evaluate the robustness of the proposed tracking algorithm.

Comparison of Tracking Performace for a Maneuvering Target under the Variation of Maneuver Detection Thresholds (기동 유무 판별 기준의 변화에 따른 기동표적의 추적 성능 비교)

  • Park, Je-Hong;Lee, Woo-Joo;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • For a long time target maneuvers in tracking problem have been a difficult task to handle. In order to solve this problems. there have been various tracking techniques. In the development of a tracking filter for a maneuvering target, maneuver detection threshold plays a key role. However, no study of filter performance the varying maneuver detection threshold has been carried out so far. Instead, the maneuver detection have been chosen empirically. In this paper, the effect of detection threshold selection on the performance of the tracking filters was considered and the relationships between maneuvers and the detection threshold have been analyzed by simulation.

  • PDF