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Abstract 

 
Multiple target tracking mainly focuses on tracking unknown number of targets in the complex 
environment of clutter and missed detection. The generalized labeled multi-Bernoulli (GLMB) 
filter has been shown to be an effective approach and attracted extensive attention. However, 
in the scenarios where the clutter rate is high or measurement-outliers often occur, the 
performance of the GLMB filter will significantly decline due to the Gaussian-based 
likelihood function is sensitive to clutter. To solve this problem, this paper presents a robust 
GLMB filter and smoother to improve the tracking performance in the scenarios with high 
clutter rate, low detection probability, and measurement-outliers. Firstly, a Student-T 
distribution variational Bayesian (TDVB) filtering technology is employed to update targets’ 
states. Then, The likelihood weight in the tracking process is deduced again. Finally, a 
trajectory smoothing method is proposed to improve the integrative tracking performance. The 
proposed method are compared with recent multiple target tracking filters, and the simulation 
results show that the proposed method can effectively improve tracking accuracy in the 
scenarios with high clutter rate, low detection rate and measurement-outliers. Code is 
published on GitHub. 
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1. Introduction 

The significant difficulty of multiple target tracking (MTT) is to track an unknown 
number of targets in the complex scenarios with strong interference, missed detection, and 
clutters. In the past decade, MTT technology has been widely used in various fields, such as 
radar networks [31], vehicle tracking [32], robot vision [33], etc. The most important theories 
in MTT mainly include the random finite set (RFS) [1] and the labeled RFS (LRFS) [2].  A lot 
of work has been done based on these two theories, which make RFS and LRFS become hot 
MTT frameworks in recent years. 

Based on the Finite Set Statistics (FISST), Mahler presented the RFS theory and its first-
order moment, i.e., the probability hypothesis density (PHD) filter [1]. The most important 
implementation of the PHD framework is the Gaussian mixture PHD (GM-PHD) filter [3], 
which simplifies the difficulty of integral solution of a PHD by the Gaussian mixture method. 
The Poisson multi-Bernoulli mixture (PMBM) filter was proposed in [4], which is the closed-
form solution for Poisson birth model and can provide data association result. The PMBM 
model has been combined with Gamma Gaussian inverse Wishart (GGIW) model and applied 
to extended target tracking [26]. Other important RFS based tracking methods include 
cardinalized PHD (CPHD) [5], particle PHD [6], etc. 

However, previous studies have found that the RFS based filters cannot provide track 
association results, which greatly limits the application of RFS based filters. Recently, some 
RFS methods have been proposed to solve this problem, such as [4] and [27]. Another 
important solution is the LRFS method [2], which establishes a strict mathematical model for 
the trajectory. The important implementations of LRFS are delta GLMB (δ-GLMB) [7] and 
labeled multi-Bernoull (LMB) [8] filters, which can achieve more accurate tracking result than 
PHD filters and provide target trajectories. Therefore, the GLMB/LMB filtering technologies 
are state-in-art tracking frameworks in recent years. Other important discussions on 
GLMB/LMB can be found in [9]-[17]. Compared with RFS based filters, LRFS based filters 
achieve better tracking accuracy, but need more computational cost. Therefore, [18] presented 
an efficient GLMB (E-GLMB) filter to reduce the computational complexity using the Gibbs 
sampling method. The E-GLMB filter is an important work in recent years and has shown 
superior performance in MTT. However, in complex scenarios, such as scenarios with high 
clutter rate, high missed detection probability, and measurement-outliers, the performance of 
the E-GLMB filter will decrease significantly. Note that the measurement-outliers are 
generated by the sudden interference of the sensor at a certain time, i.e. the mathematical 
expectation of the measurement noise increases at that time. 

Tracking in complex scenarios is an important problem of MTT. Particle filtering 
technology is a method to solve the complex or nonlinear tracking problem, and it has been 
discussed in GLMB [23] and PHD [24] filters. However, due to the large computational cost, 
it is difficult to implement a particle filter in real scenarios. Student-T distribution filtering 
technology is an efficient method to handle the complex linear scenarios. Compared with the 
Gaussian distribution, the Student-T distribution achieves better performance in dealing with 
outliers, thus it can improve the tracking accuracy in complex scenarios. The Student-T 
distribution filtering technology is a hot topic in recent years [28]-[29] and  Student-T-
distribution-based PHD filters have been derived in [25].  

This paper proposes a Student-T distribution variational Bayesian E-GLMB (TDVB-E-
GLMB) filter and a multi-target smoother. The TDVB [19] is a robust filtering technology 
compared with Bayesian filtering framework, thus the proposed method can improve the 
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tracking performance in complex scenarios. For example, when the E-GLMB filter is applied 
to vehicle tracking, the strong light, fog and other environmental factors may lead to a large 
number of clutter in the radar system, resulting in the decline of tracking accuracy. The 
proposed method use the TDVB framework to improve the robustness of the filtering process, 
thus the influence of clutter on accuracy will be reduced. Moreover, a corresponding 
smoothing method is proposed for GLMB framework to improve the overall tracking accuracy. 
The contributions of this work are summarized as follows: 

(1)This work applies TDVB filtering technology [19] to the E-GLMB filter. A new 
likelihood function is derived to replace the Gaussian likelihood. Therefore, the 
proposed TDVB-E-GLMB filter can significantly improve the tracking accuracy in 
complex scenarios. 

(2)A multi-target TDVB smoothing method is proposed for GLMB framework. This 
method considers the missed detected targets and pseudo targets based on trajectories 
provided by the GLMB framework. Therefore, the proposed TDVB smoother can 
significantly improve the performance of a GLMB filter. 

Code is published on Github [22]. Further analysis of the proposed TDVB-E-GLMB filter 
can be done through this code. 

The paper is organized as follows. Section II introduces the E-GLMB filter, variational 
Bayesian inference, and TDVB filtering technology. Section III introduces the proposed 
TDVB-E-GLMB filter.  Section IV introduces the proposed multi-target smoothing method 
for a GLMB filter. Section V shows the simulation results. Section VI contains our conclusions. 

2. Background 

2.1 Problem Statements 
In general, the system function of the tracking process is described as 

( )11, −−= kkk vxfx ,     (1) 
( )kkk wxz ,τ= ,     (2) 

where ( )⋅f  denotes the state model and ( )⋅τ  denotes the observation model. 1−kv  and kw  are 
corresponding noises. In a standard RFS or LRFS filter, the state and observation models are 
usually defined as Gaussian model, due to the simple mathematical form and low 
computational complexity. Also, the state updating process is a Bayesian recursive process. 
Therefore, the state model and measurement model can be written as 

( )( )1 1| ~ N ,− −k k k kx x f x Q ,    (3) 

( )( )| ~ N ,τk k k kz x x R .     (4) 
 However, the Gaussian model also leads to the lack of robustness in complex scenarios 

such as low detection rate, high clutter rate, and measurement-outliers. The measurement-
outliers is the measurement at a certain scan when expectation of measurement error increases 
by the strong interference. For example, the expectation of measurement noise is usually 0R ,  
but the expectation increases to a large 1R  at the time of strong interference. The measurement 
obtained by the sensor system with 1R  as the expected error calls measurement-outlier. 

In the complex scenarios, using Gaussian model to describe the measurement generation 
will lead to the lack of robustness. Compared with Gaussian distribution, the Student-T is a 
distribution with lower peak and higher tail, thus it is easier to handle outliers. In [25] and 
[28]-[29], the Student-T distribution was employed to handle the measurement-outliers and 
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the results show its better performance. However, the Student-T distribution can only perform 
well for measurement-outliers, but it is not robust to other complex scenarios. Moreover, 
compared with the Bayesian recursive process, the VB recursive process has more robustness. 
Therefore, the combination of Student-T distribution and VB process will greatly improve the 
tracking robustness, and this work has been discussed in [19]. 

In this work, we employ the TDVB model proposed in [19] to modify the E-GLMB filter. 
The state and measurement models are defined as the Gaussian model with the random 
auxiliary variable, i.e. (18)-(19). Note that this measurement model allows for measurement-
outliers. The state updating model is modified by TDVB filtering technology. The proposed 
new likelihood is calculated by KL divergence, i.e. formula (35)-(37).  

2.2 The E-GLMB Filter 
The E-GLMB filter uses the Gibbs sampling and joint prediction-update approaches to reduce 
the high computational cost of the δ-GLMB filter. To achieve the goal of joint prediction and 
update, the E-GLMB filtering density is given by 

( ) ( ) ( ) ( ) ( ), , ,

, ,

ξ θ ξ θ

ξ θ

π δ+ + +

+ + + +

+ +
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 Χ ∝ ∆ Χ Χ    ∑ I
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where, ξ  denotes the history of association. θ  denotes the association map. ( )ΧL  denotes the 

label set and I  denotes the set of object labels. ( )δ
+

Χ  I L  means that if the new label set 
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where, ( ) ( ), ,θ+ + + +∈ ∈ ∈ΘI F C I F C . 1 ( )
+ +C h  means that if + +⊂h C , the value is 1, otherwise, 

0. Β  denotes the track label space for target birth. ,+Br  is probability that a new object with 

label is born.  ( )( ) ( ),θψ + +

+ +⋅h
Z h  is a likelihood function which is defined in [18, section II.A]. 

( ),⋅SP h  denotes the target survival probability. In the specific implementation process, the 
GLMB component is a Gaussian mixture form 
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where, ( )N ⋅  denotes the Gaussian distribution. ( ) ( ),
,

ξ θ
+Z im h  and ( ) ( ),

,
ξ θ
+Z iP h  denote the Gaussian 

mean and covariance matrix. ( ),
, ( )ξ θ

+Z iw h is the weight of the Gaussian mixture. ( ) ( ),ξ θη
+Z h  denotes 

the normalization. 

2.3 The Variational Bayesian Inference 
The key method of the VB technology is to use a function ( )ZΨ  to approximate the posterior 
probability density ( )|g Z X  by computing the Kullback-Leibler (KL) divergence, i.e., 

( ) ( ) ( )ln KL ||= Ψ + Ψg X g L .     (11) 
Assuming that ( ) ( )i

i

Z zΨ = Ψ∏ , then ( )L Ψ  can be written as 

( ) ( ) ( )( )
( )( )

*

:

KL ||j j

j
i i j

L z z

H z const
≠

Ψ = − Ψ Ψ

+ Ψ −∏
.    (12) 

Obviously, the function ( )L Ψ  will maximize when ( ) ( )( )*KL || 0j jz z− Ψ Ψ = , thus we 
obtain 

( ) ( ) ( )( )*
exp ln ,

normalize constant
≠   Ψ = Ψ =

i j
j j

E g Z X
z z .   (13) 

As a result, ( )Ψ Z  can be approximated to ( )|g Z X . 

2.4 The TDVB Filtering Technology 
Compared with the Gaussian distribution, the Student-T distribution achieves better 
performance in dealing with complex scenarios with strong interference. Also, the variational 
Bayesian processes can deal with nonlinear cases by iteration. Therefore, the Student-T 
distribution variational Bayesian filtering technology is a robust approach to handle non-linear 
scenarios, especially in measurement-outlier scenarios. 

According to [19], the system model is given by 
( )( )1 1| ~ N ,− −k k k kx x f x Q ,           (14) 

( )( )| ~ St , ,τ νk k k kz x x R ,      (15) 
where, kx  denotes the target state. kz  denotes the measurement. ( )St ⋅  denotes the Student-T 
distribution. ( )⋅f  and ( )τ ⋅  are dynamic and observation models, respectively.  kQ  and kR  are 
process and measurement noise, respectively. ν  is the degree of freedom of Student-T 
distribution. The probability density of Student-T distribution can be written as 

( )( ) )1 21St , , 1τ ν
+

−−∝ + ℵ ℵ


v d
T

k k kx R R
v

,    (16) 

( )( )τℵ = −k kz x ,      (17) 
where, d  is the dimensions of physical space. The formula (16) can be approximately 
expressed as a hierarchical Gaussian form by employs an auxiliary random variable λk , thus 
formula (15) become 

( ) 1| , ~ N ,λ τ
λ

 
 
 

k k k k k
k

z x x R ,     (18) 
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( )~ Gamma 2, 2λk v v ,     (19) 
where, ( )Gamma ⋅  denotes the Gamma distribution. Since (14) is a standard Gaussian form, 
the state prediction steps can use a standard Kalman filtering technology. According to (18)-
(19), the Student-T distribution is approximated to a Gaussian distribution with the random 
auxiliary variable, thus the sate updating can be given by 

( )| 1 µ−= + −k k k k k km m K z ,     (20) 

| 1−= + T
k k k k k kP P K S K ,      (21) 

where, 
( ) ( )| 1 | 1N | ,µ τ − −= ∫k k k k k k k kx x m P dx ,        (22) 

( )( ) ( )( )
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1N | ,
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× +

∫
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k k k k k

k k k k k k k
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,       (23) 
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( )( ) ( )( )(
( ) )1N | ,

γ τ τ

−

= − −

×

∫
T

k k k k k

k k k k k

tr z x z x

x m P dx R
,       (25) 

( ) ( )λ ν ν γ= + +k kd ,        (26) 
where, ( )⋅tr  denotes the trace of the matrix. d  is the dimensions of physical space. Note that, 
formulas (20)-(26) represent an iterative process using VB filtering technology. Therefore, 
given the number of iterations, formulas (20)-(21) will converge through a changing λk . 

3. The TDVB-E-GLMB Filter 

The use of Gaussian component leads to the decrease of E-GLMB filter’s performance in the 
complex scenarios. This section proposed an implementation approach using TDVB filtering 
technology to enhance the robustness of the E-GLMB filer.  

3.1 The Key Method 
A GLMB filter uses the Kalman filtering technology to update the kinematical states of 
components, and uses the Gaussian distribution to calculate the likelihood. Then, this 
information will be employed to update the track table. The form of a track table is shown in 
Fig. 1. ( )hI  is the set of labels, ( )hw  is the weight of a track, and ( )hp  denotes the densities. In 
the δ-GLMB filter, all the target kinematical states are stored in another memory, but the E-
GLMB filter does not need to store all of them by joint prediction and update. The density ( )hp  
is related to the method of the filtering technology for updating target kinematical state, and 
its physical meaning is the spatial likelihood of the measurement. 
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Fig. 1. Example of track component. 

 
In a standard GLMB filter, ( )hp  is the Gaussian mixture form and the details can be found 

in [7, section IV.B]. However, it is found in the simulation that the robustness of Gaussian 
mixture form is insufficient in complex scenarios, which leads to a significant decline in 
tracking accuracy. Therefore, the key method of proposed approach is to employ the more 
robust TDVB filtering technology to update the target kinematical state. Then, deriving a 
corresponding ( )hp  to improve the accuracy of the track table. Note that the proposed method 
is derived as a linear filter, and therefore can only be guaranteed to work for linear state 
transition and measurement models. 

3.2 Implementation of the TDVB-E-GLMB Filter 
Since the main contribution of this work is to implement the TDVB filtering technology and 
propose a new density, the trajectory density is the same as that in [18]. The system equations 
of the proposed method are (14)-(15). According to (14), the state prediction of TDVB 
approach is the Gaussian form, thus the state prediction step of the proposed TDVB-E-GLMB 
filter is the same as in [7, section V]. According to (15)-(17) and VB filtering technology, the 
density ( )hp  can be written in the form of Student-T distribution, i.e. 
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where, 
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where, according to (22)-(24), the innovation parameters can be calculated by 
( ) ( ) ( )lmHzu h
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where, kH  is the observation matrix. The auxiliary random variable λk  can be obtained by 

( ) ( ) ( )( )( ){ }1trλ − = + + 
 

Th h
k k k kv d v u u R .    (33) 

Note that, formulas  (28)-(32) need to be iterated to make λk  converge. ( )( )Zlxp h
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where, Dp  is the target missed detection probability. ( )lzk ,κ  is the density of clutters. 
( ) ( )lw h

ikk ,1| −  is the prediction weight and it is equal to ( ) ( )lw h
ikk ,1|1 −−  (or birth weight when 

( ) ( )lw h
ikk ,1|1 −−  does not exist). ( )( )lzq kk

h
ik ,,, λ  is the measurement likelihood. Since formulas (28)-

(33) are TDVB form, ( )( )lzq kk
h
ik ,,, λ  will be the same as that in [19], i.e. 
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The process of computing GLMB parameters 
( ) ( ) ( )( ){ }

1
, ,

+
+ + +

+
+ + +

=

H
h h h

h
I w p  

is the same as the E-GLMB filter. Since it will take a long time to introduce the updating 
method of these trajectory parameters and this work has not contributed to this part, the 
specific formulas will not be introduced in detail in this work.  The details can be found in [18, 
section 3 E].  
In summary，this section improve the update steps of target kinematical state by formulas 
(28)-(33). Also, a new likelihood function is given by formulas (35)-(37). The code was 
published on GitHub [22] to help readers understand full details. The proof process of formula 
(36) and (37) can be found in the Appendix. In the next subsection, an effective multi-target 
TDVB smoother will be introduced. 

4. The Multi-target TDVB Smoother 
Smoothing the estimated state can effectively improve the performance of a tracker. The 
GLMB is an LRFS based tracking framework and can provide accurate trajectory information, 
thus it is feasible to use a smoothing method to improve the tracking performance. In this 
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section, we proposed an MTT smoothing method based on TDVB smoothing technology. 

4.1 The Key Method 
The proposed smoothing method is based on the work in [19] and [20] (which can only be 
used in single target scenarios). The MTT scenario is different from a single target scenario, 
because it has missed detection, pseudo-track and data association problems. Therefore, we 
modify the single target smoother and apply it to the GLMB filtering framework. 

The method in [19] and [20] is to smooth the estimated state after filtering. However, in 
MTT scenarios, the estimated state is obtained by the multiple hypotheses filtering process, 
which means that the estimated state is greatly affected by other targets, missed detection, and 
clutters. Fig. 2 shows an example in which the accuracy of multiple hypothesis filtering is 
reduced due to the closely-spaced targets. The gray arrow represents the movement direction. 
The forks and the dots represent the measurements produced by two targets at different scans, 
respectively. In the process of multiple hypothesis tracking, the measurement of two targets 
will affect the tracking accuracy. Further considering the influence of missed detection and 
clutters, as a result, the state estimation accuracy of filtering two targets will be lower than that 
of filtering a single target.  

 

 
Fig. 2. Example of closely-spaced targets. Forks and the dots denote measurements of the two targets, 

respectively. 
 
Therefore, in MTT scenarios, our view is not to smooth the filtered target state, but to make 

full use of the measurement information collected in the filtering and track association process. 
Our key method is: 1) storing the measurement set used to update the track during the tracking 
process, thus we obtain the measurement set of each target; 2) filtering the measurement set 
of each target, thus more accurate state estimation results can be obtained; 3) smoothing the 
state using TDVB smoothing technology. An example of a measurement set is all the forks in 
Fig. 2.  

The details of the application of the proposed idea in a GLMB filter will be introduced in 
the next sub-section. Note that the proposed method is not only suitable for the GLMB filtering 
framework, but also to other filters that can provide target tracks. 

4.2 The TDVB smoother for the GLMB filter 
The standard GLMB filter can provide the labels and states, but not the corresponding 
measurement set of each target. Therefore, measurement storing steps should be included in 
the state update part. Formulas (23)-(27) are the steps of updating the state using a 
measurement kz , thus a measurement memory ( )h

kẐ  of the h -th track can be included in these 

steps as ( )
k

h
k zZ ←ˆ . When a GLMB component is deleted due to its small weight, the memory 

also needs to be deleted. As a result, at time k, all tracks output by the GLMB filter will have 
a corresponding measurement set kẐ . Note that kẐ  is only a memory in the GLMB filtering 

Target 1 

Target 2 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022                                   917 

process and does not affect other steps of the GLMB filter. 
At time k, the measurement memory can be written as  

( ){ } ( )

( )
max

min 1
=

=

 
 
 

trajh

h

N
Dh

k k D
h

z ,  

where, ( )
min

hD  and ( )
max

hD  are the beginning and ending time interval of the h  track, respectively. 

trajN  is the number of all the tracks that have appeared. ( )h
kz  denotes the corresponding 

measurement used to update the component states at time k. Fig. 3 shows an example where  
2=trajN . The memory stores the measurements corresponding to the two tracks. Note that if 

no measurement is used to update the component at some scan (i.e. it is a missed detection 
component), then ( ) = ∅h

kz . 
 

k 1 2 3 4 5 6 7 8 

h = 1 ( )1
1z  

( )1
2z  

( )1
3z  

( )1
4z  

( )1
5z  

( )1
6z    

h = 2   ( )2
3z  

( )2
4z  ∅  

( )2
6z  

( )2
7z  

( )2
8z  

Fig. 3. Example of the measurement memory. 
 

For each measurement set 
( ){ } ( )

( )
max

min=

h

h

Dh
k k D

z ,   

the first step is to determine whether the track is generated from the clutters. Given a number 
pseN , the trajectory should be deleted if  

( ){ } ( )

( )
max

min=
≤

h

h

Dh
k psek D

z N ,     (38) 

otherwise, the new target states of the track can be calculated by 

( )
( ) ( )

( ) ( )
| 1

|

| 1

, if

, if
−

−

 ′ + ≠ ∅′ = 
′ = ∅

h h
k k k k kh

k k h h
k k k

m K u z
m

m z
,    (39) 

( )
( ) ( )

( ) ( )

1
| 1

|

| 1

, if

, if

−
−

−

 ′ + ≠ ∅′ = 
′ = ∅

h hT
k k k k k kh

k k h h
k k k

P K S K z
P

P z
,    (40) 

 
where, ( )

|′
h

k km  and ( )
|′

h
k kP  are the new states calculated by the measurement set of the h -th track. 

The calculation approach of innovation parameters ( )h
ku , kK , and kS  is the same as that in 

(25)-(27). The formulas (39)-(40) consider the missed detection. Therefore, formulas (38)-(40) 
consider the scenarios of the pseudo target and missed detection. Note that, the initialization 
of formulas (39)-(40) is determined by the state provided by the GLMB filter, i.e. 

( )
( ) ( ){ }( )
min

′ = Ξh
h h

kD
m m ,     (41) 

( )
( ) ( )
min

0′ =h
h h

D
P P ,      (42) 
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where, ( )Ξ ⋅  are defined as the first non-empty element in a set. In fact, (41) is to deal with the 

situation that ( )
( )

min
h

h

D
m  provided by a GLMB filter is an empty set. ( )

0
hP  is the initial error matrix 

of the birth component of the GLMB filter. 
The initialization of the proposed smoother is 

( )
( )

( )
( )

max max,
′ ′=h h

h h

S D D
m m ,     (43) 

( )
( )

( )
( )

max max,
′ ′=h h

h h

S D D
P P .      (44) 

The smoothing process is 
( ) ( ) ( ) ( )( ), | | , 1| 1|+ +′ ′ ′ ′= + −h h h h

S k k k k S k k k km m G m m ,    (45) 
( ) ( ) ( ) ( )( ), | | 1| , 1|+ +′ ′ ′ ′= − −h h h h T

S k k k k k k S k kP P G P P G ,    (46) 

( ) ( )( )-1

| 1|+′ ′=  hT
k k k k kG P F P .      (47) 

Given a number of iterations iteN , the proposed TDVB smoother can be implemented to a 
GLMB filter. A smoother is not a real-time filter, thus a smoothing window should be set. In 
fact, the size of the window will affect the real-time performance and smoothing accuracy. 
Therefore, different smoothing windows should be selected according to different scenarios. 
The proposed method is based on the assumption that the window is large enough, thus the 
case of small window is not discussed. Research about this will be carried out in the future. 
Discussion on window size selection will be held in the next work. The pseudo-code is shown 
in Table 1 and the MATLAB code can be found in [22]. 

 
Table 1. Pseudo Code of TDVB Smoother 

INPUT: ( ){ } ( )

( )
max

min=

h

h

Dh
k k D

z , ( ){ }( )Ξ h
km , ( )

0
hP , pseN ,and iteN . 

OUPUT: ( )
, |′ h

S k km , and ( )
, |′
h

S k kP . 

Delete pseudo-tracks using the inequality (38); 
Initialize 1λ =k ; 
for i = 1 to iteN  

Initialize the state using (41)-(42); 
for k = ( )

min
hD  to ( )

max
hD  

Compute the new target states using (39)-(40) 
and (25)-(27); 

end for 
Initialize the smoother using (43)-(54); 
for k = ( )

max 1−hD  to ( )
min

hD  
Smooth the states using (45)-(47); 

end for 
for k = ( )

min
hD  to ( )

max
hD  

Compute the auxiliary random variable using 
(28); 

end for 
end for 
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5. Simulation Result 
In this section, the proposed methods are compared with the PHD filter [1], CPHD filter [5], 
and E-GLMB filter [18] with different parameters. The simulation data are generated 
according to [18], which simulates radar measurements. The target trajectories contain various 
complex cases are shown in Fig. 4. (a), and the simulated data of 100 scans (clutter rate is 50 
and 0.75=Dp ) is shown in Fig. 4. (b). The Scenario1 is a low interference scenario with low 
clutter rate, high detection probability, and no measurement-outlier. The Scenario2 is a 
complex scenario with a high cluter rate, low detection probability, and measurement-outlier. 
The section 5.3 shows the performance under different parameters.  

 The accuracy of each approach is judged by the OSPA metric [21], which does not consider 
the track association accuracy, thus it can be used to judge the performance of PHD and CPHD 
filters. Moreover, the OSPA(2) metric [30], which considers the track association accuracy, is 
used to more accurately judge the performance of GLMB filters. The simulation environment 
is as follows: Software: MATLAB 2019(a); Computer system: Windows 10; CPU: Intel(R) 
Core(TM) i7-6700HQ; RAM: 8GB. The specific tracking parameters are shown in TABLE II.  

 
Table 2. The Parameters of Different Scenarios 

 Meaning Scenario1 Scenario2 

Invariant param
eters 

Surveillance volume 
(m2) =4000 2000×  

Scanning interval (s) 1=sT  

Survival  probability 0.99=Sp  

Process noise [ ]( )diag 1,0,1,0=kQ  

Measurement noise ( )2 2diag 10 ,10 =  kR  

Freedom of Student-T 10=v  

Pseudo track threshold 1=pseN  

VB iteration times 10=iteN  

B
irth 

 

Weight 0 0.01=w  

Kinematical state 0 x,0 y,0,0, , 0 =  
T

m u u  

Covariance matrix [ ]( )0 diag 100,100,100,100=P  

Interference 
t

 

Outlier noise  ( )2 2diag 50 ,50 ℜ =  k  

Outlier probability 0 10% 
Clutter rate (per scan) 20 50 

Detection probability 0.95=Dp  0.75=Dp  

 
In the table, x,0u and y,0u  denote the coordinates of X and Y axes, respectively. The outlier 

noise ℜk  with probability 10% means that: the measurement noise kR  of each target per scan 
has a 10% probability of being replaced by ℜk . 
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(a)                                                                         (b)  

Fig. 4. Target trajectories and simulated data. 

5.1 Results of Scenario1 
In this subsection, the performance of each approach is judged by average result of 200 Monte 
Carlo runs. 

Fig. 5. (a) shows the average OSPA results. The values of PHD and CPHD filters are 
obviously larger than GLMB filters, thus the tracking accuracy of a GLMB filter is higher than 
that of PHD and CPHD filters.  

Fig. 5. (b) shows the average OSPA(2) results. The values of proposed TDVB-E-GLMB 
filter are significantly lower than that of E-GLMB filter when the data reaches the peaks. These 
data peaks are caused by the crossing and birth of targets, thus the proposed TDVB-E-GLMB 
filter is more robust in complex cases. However, the values of TDVB-E-GLMB are slightly 
higher than E-GLMB sometimes. It means that although the proposed method has strong 
robustness, the track association accuracy is slightly lower than the E-GLMB filter in ideal 
tracking environment. Moreover, the proposed smoother can significantly improve the 
accuracy of the two GLMB filters, and the smoothing results for TDVB-J-GLMB achieve the 
best performance. 

Fig. 5. (c) shows the average estimation results of the number of targets. It can be seen that 
the GLMB trackers achieve high accuracy in this scenario, but the accuracy of PHD and CPHD 
filters is insufficient.  

Fig. 5. (d) shows the average time costs. The values of the PHD and CPHD filters are 
significantly lower than GLMB filters. Therefore, the PHD and CPHD are low precision high 
speed filters. The values of proposed TDVB-E-GLMB are slightly lower than E-GLMB filter 
sometimes. In fact, the use of TDVB filtering technology will increase the updating 
computation time of each component. However, the improvement of the filtering accuracy 
leads to the decrease of the number of  components, thus the overall time cost is slightly lower 
than that of the E-GLMB filter. Moreover, the proposed smoother only slightly increases the 
time cost of a GLMB filter (the corresponding values in the figure are obtained by filtering 
time + smoothing time). Therefore, the proposed smoother can greatly improve the filtering 
accuracy with minimal computational cost. 
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      (a) OSPA     (b) OSPA(2) 

 

 
  (c) Number of target    (d) Time cost 

 

Fig. 5. Average performance of 200 Monte Carlo runs in Scenario1. 
 

5.2 Results of Scenario2 
Scenario2 is a complex scenario, thus it can judge the robustness of different approaches. 

The performances are judged by the average results of 200 Monte Carlo runs. 
Fig. 6. (a) shows the average OSPA results. The GLMB filters are still better than PHD 

and CPHD filters in tracking accuracy.  
Fig. 6. (b) shows the average OSPA(2) results. The values of the TDVB-E-GLMB filter 

are obviously lower than that of E-GLMB, which means that the proposed method has strong 
robustness in complex scenarios. Moreover, the proposed smoother achieves the best 
performance. Therefore, the proposed smoother can handle complex scenarios as well.  

Fig. 6. (c) shows the average estimation results of the number of targets. Compared with 
Fig. 5. (b), the complex tracking environment significantly affects the estimation accuracy of 
all approaches. However, the values estimated by the proposed TDVB-E-GLMB filter and 
smoother are closer to the real values. 

Fig. 6. (d) shows the average time cost. As can be seen, the computational cost of proposed 
TDVB-E-GLMB filter and smoother are slightly higher than the standard E-GLMB filter.  
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  (a) OSPA error    (b) OSPA(2) 

 
(c) Number of targets    (d) Time cost 

 

Fig. 6. Average performance of 200 Monte Carlo runs in Scenario2. 
 

5.3 Performance Under Different Parameters 
In this scenario, we show the average OSPA(2) performance of 200 Monte Carlo runs with 

different parameters. 
Fig. 7 shows the performance of different clutter rate and detection probability in the 

scenarios without measurement-outliers. It can be seen that the OSPA(2) values of the TDVB-
E-GLMB filter is slightly lower than that of the E-GLMB filter. However, with the increase 
of the clutter rate (or the decrease of detection probability), the performance advantage of the 
proposed TDVB-E-GLMB filter becomes more obvious. It shows that the proposed algorithm 
has strong robustness under different parameters. Also, the proposed TDVB-E-GLMB filter 
with our smoothing approach achieves the best performance.  
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       (a) 0.95=Dp        (b) 20γ =  

Fig. 7. Average OSPA(2) of 200 Monte Carlo runs with different parameters in the scenarios 
without measurement-outlier. 

 
Fig. 8 shows the average performance in the scenarios with measurement-outliers. 

Compared with Fig. 4, the performance advantage of the proposed TDVB-E-GLMB filter and 
the corresponding smoother is more obvious. Therefore, in the case of various parameters of 
different scenarios, the proposed approaches can effectively deal with measurement-outliers.  

 

 
(a)  0.95=Dp        (b)  20γ =  

Fig. 8. Average OSPA(2) of 200 Monte Carlo runs with different parameters in the scenarios 
where the probability of measurement-outlier is 10%. 

6. Conclusion 
In this paper, we propose a TDVB-E-GLMB filter and a corresponding smoother for tracking 
multiple targets. The first contribution is that the TDVB filtering technology is used in the E-
GLMB filter to improve the accuracy and robustness. The second contribution is that we 
proposed a smoother for the GLMB filtering framework to improve the state estimation 
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accuracy. The simulation results show that the performances of the proposed TDVB-E-GLMB 
filter and corresponding smoother are better than PHD, CPHD, and E-GLMB filters in various 
complex tracking scenarios. Note that, the proposed smoother uses the track information to 
obtain the measurement memory, and uses this memory for smoothing. Therefore, in theory, 
the proposed smoother can be applied to other filters which can provide tracks, rather than 
only to the GLMB filter.  

In the future, we plan to apply the Student-T distribution to extended target tracking filters, 
such as [26]. 

Appendix 

The KL divergence between ( )( )lzq kk
h
ik ,,, λ  and ( )( ) ( )( )llz k

h
ikkk

h
ik ,,, ,, λϕλφ  can be written as 
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According to formula (13), ( )( )lz kk
h
ik ,,, λφ  and ( )( )lk

h
ik ,, λϕ  can be written as 

( )( )( ) ( )( )( )( ) const,,ln,ln ,, += lzqEl kk
h
ikxk

h
ik k

λλϕ ,   (49) 
( )( )( ) ( )( )( )( ) const,,ln,,ln ,, += lzqElz kk

h
ikkk

h
ik k

λλφ λ .   (50) 
According to (27),  we obtain 
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Take formula (51) into (49), we obtain 
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As a result, we obtain 
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where, ( )h
ku  is the same as that in formula (30). 
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Similarly, ( )( )lz kk
h
ik ,,, λφ  can be written as 
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Here, 
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where, 
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