• Title/Summary/Keyword: Tantalum precursor

Search Result 13, Processing Time 0.042 seconds

Effect of By-product (NH4Cl) on the Improvement of the Red Color Tone of Tantalum Nitride (Ta3N5) (탄탈륨 질화물(Ta3N5)의 적색도 향상에 미치는 NH4Cl의 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.583-586
    • /
    • 2009
  • The Tantalum nitride has attracted wide at attention as issues related to the toxicity of Cd-related materials. But in the titration process of Ta$Cl_5$ solution with $NH_4$OH, $NH_4$Cl, as a by product, was remained in the prepared Tantalum precursor. The tantalum precursor with $NH_4$Cl was nitrided by ammonolysis. The red color tone of $Ta_3N_5$ was reduced by the residual $NH_4$Cl reduce. Therefore, amorphous Tantalum precursor was prepared by filtering process with as hydrous ethanol to remove the $NH_4$Cl. In the case of using Tantalum precursor without $NH_4$Cl, we successfully synthesized the Tantalum nitride with good red color. The value of red color tone was improved from $a^*$=36.8 to $a^*$=53.0. The synthesized powder was characterized by XRD, SEM, the Nitrogen / Oxygen Determinator, TG-DTA, and the CIE $L^*a^*b^*$ colorimeter.

Synthesis of Tantalum Oxy-nitride and Nitride using Oxygen Dificiency Tantalum Oxides (산소결핍 탄탈륨 산화물을 활용한 탄탈륨 산질화물 및 질화물 합성)

  • Park, Jong-Chul;Pee, Jae-Hwan;Kim, Yoo-Jin;Choi, Eui-Seock
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.489-495
    • /
    • 2008
  • Colored tantalum oxy-nitride (TaON) and tantalum nitride ($Ta_{3}N_{5}$) were synthesized by ammonolysis. Oxygen deficient tantalum oxides ($TaO_{1.7}$) were produced by a titration process, using a tantalum chloride ($TaCl_5$) precursor. The stirring speed and the amount of $NH_{4}OH$ were important factors for controling the crystallinity of tantalum oxides. The high crystallinity of tantalum oxides improved the degree of nitridation which was related to the color value. Synthesized powders were characterized by XRD, SEM, TEM and Colorimeter.

Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5) (적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

A study on the SiC selective deposition (SiC의 선택적 증착에 관한 연구)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • SiC thin films were deposited by chemical vapor deposition method using tetramethylsilane (TMS) and hexamethyldisilane (HMDS). The chamber pressure during the deposition was kept at about 1 torr. Precursor was transported to the reaction chamber by $H_2$gas and SiC deposition was carried out at the reaction temperature of $1200^{\circ}C$. Si-wafer masked with tantalum and MgO single crystal covered with platinum and molybdenum were used as substrates. The selectivity of SiC deposition was observed by comparing the microstructure between metal (Ta, Pt, and Mo) surfaces and substrate surfaces (Si and MgO). The deposited films were identified as the $\beta-SiC$ phase by X-ray diffraction pattern. Also, the deposition -behavior of SiC on each surface was investigated by the scanning electron microscope analysis.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Atomic Layer Deposition of $Ta_2O_5$ film on Si Substrate with Ta(NtBu)(dmamp)$_2Me$ and $H_2O$

  • Lee, Seung Youb;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.619-619
    • /
    • 2013
  • The interfacial state between $Ta_2O_5$ and a Si substrate during the growth of $Ta_2O_5$ films by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy (SRPES). A newly synthesized liquid precursor Ta($N^tBu$) $(dmamp)_2Me$ was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. After each half reaction cycle, samples were analyzed using in-situ SRPES under ultrahigh vacuum at room temperature. SRPES analysis revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almostdisappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset between $Ta_2O_5$ and the Si substrate was 3.22 eV after 3.0 cycles.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Property Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Kim, Seok Hwan;Lee, Jouhahn;Yun, Hyung Joong;Park, Soo Jeong;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.362-362
    • /
    • 2014
  • Atomic layer deposition (ALD) can be regarded as a special variation of the chemical vapor deposition method for reducing film thickness. ALD is based on sequential self-limiting reactions from the gas phase to produce thin films and over-layers in the nanometer scale with perfect conformality and process controllability. These characteristics make ALD an important film deposition technique for nanoelectronics. Tantalum pentoxide ($Ta_2O_5$) has a number of applications in optics and electronics due to its superior properties, such as thermal and chemical stability, high refractive index (>2.0), low absorption in near-UV to IR regions, and high-k. In particular, the dielectric constant of amorphous $Ta_2O_5$ is typically close to 25. Accordingly, $Ta_2O_5$ has been extensively studied in various electronics such as metal oxide semiconductor field-effect transistors (FET), organic FET, dynamic random access memories (RAM), resistance RAM, etc. In this experiment, the variations of chemical and interfacial state during the growth of $Ta_2O_5$ films on the Si substrate by ALD was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor $Ta(N^tBu)(dmamp)_2$ Me was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicide was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset value between $Ta_2O_5$ and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Properties Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.283.2-283.2
    • /
    • 2013
  • The variation of chemical and interfacial state during the growth of Ta2O5 films on the Si substrate by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor Ta(NtBu)(dmamp)2Me was used as the metal precursor, with Ar as a purging gas and H2O as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of Ta2O5 growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the Ta5+ state, which corresponds with the stoichiometric Ta2O5, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between Ta2O5 and Si. The measured valence band offset value between Ta2O5 and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition (플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절)

  • Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • $TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.