• Title/Summary/Keyword: Takagi.Sugeno fuzzy model-based control

Search Result 114, Processing Time 0.023 seconds

T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time (이산시간에서의 장주기모델에 관한 다개체시스템의 T-S 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae;Kim, Moon Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • This paper addresses a formation control problem for a phugoid model-based multi-agent system in discrete time by using a Takagi-Sugeno (T-S) fuzzy model-based controller design technique. The concerned discrete-time model is obtained by Euler's method. A T-S fuzzy model is constructed through a feedback linearization. A fuzzy controller is then designed to stabilize the T-S fuzzy model. Design condition is presented in the linear matrix inequality format.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Observer-Based Output-feedback Sampled-Data Controlling the Singularly Perturbed Takagi-Sugeno Fuzzy Model (특이섭동 타카기 수게노 퍼지모델의 관측기기반 - 출력궤환 샘플치제어)

  • Kang, Hyoung Bin;Moon, Ji Hyun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.679-685
    • /
    • 2016
  • This paper addresses an observer-based output-feedback sampled-data controller design problem for nonlinear systems in Takagi-Sugeno (T-S) form including singular perturbations. The design condition is represented in terms of linear matrix inequalities. The separation principle is also investigated.

Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems (장주기모델로 구성된 다개체시스템의 퍼지 군집제어)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.508-512
    • /
    • 2016
  • This paper discusses a Takagi-Sugeno (T-S) fuzzy controller design problem for a phugoid model-based multi-agent system. The error between the state of a phugoid model and a reference is defined to construct a multi-agent system model. A T-S fuzzy model of the multi-agent system is built by introducing a nonlinear controller. A fuzzy controller is then designed to stabilize the T-S fuzzy model, where the synthesis condition is represented in terms of linear matrix inequalities.

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

  • Koo, Geun Bum;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.724-732
    • /
    • 2016
  • In this paper, a sampled-data observer-based decentralized fuzzy control technique is proposed for a class of nonlinear large-scale systems, which can be represented to a Takagi-Sugeno fuzzy system. The premise variable is assumed to be measurable for the design of the observer-based fuzzy controller, and the closed-loop system is obtained. Based on an exact discretized model of the closed-loop system, the stability condition is derived for the closed-loop system. Also, the stability condition is converted into the linear matrix inequality (LMI) format. Finally, an example is provided to verify the effectiveness of the proposed techniques.

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

Takagi-Sugeno Fuzzy Model-Based Approach to Robust Control of Boost DC-DC Converters

  • Seo, Sang-Wha;Choi, Han Ho;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.925-934
    • /
    • 2015
  • This paper considers the robust controller design problem for a boost DC-DC converter. Based on the Takagi-Sugeno fuzzy model-based approach, a fuzzy controller as well as a fuzzy load conductance observer are designed. Sufficient conditions for the existence of the controller and the observer are derived using Linear Matrix Inequalities (LMIs). LMI parameterizations of the gain matrices are obtained. Additionally, LMI conditions for the existence of the fuzzy controller and the fuzzy load observer guaranteeing α-stability, quadratic performance are derived. The exponential stability of the augmented fuzzy observer-controller system is shown. It is also shown that the fuzzy load observer and the fuzzy controller can be designed independently. Finally, the effectiveness of the proposed method is verified via experimental and simulation results under various conditions.