DOI QR코드

DOI QR Code

T-S Fuzzy Formation Controlling Phugoid Model-Based Multi-Agent Systems in Discrete Time

이산시간에서의 장주기모델에 관한 다개체시스템의 T-S 퍼지 군집제어

  • Moon, Ji Hyun (Department of Electronic Engineering, Inha University) ;
  • Lee, Jaejun (Department of Electronic Engineering, Inha University) ;
  • Lee, Ho Jae (Department of Electronic Engineering, Inha University) ;
  • Kim, Moon Hwan (LIG Nex1 Maritime Research Center)
  • Received : 2016.05.24
  • Accepted : 2016.08.10
  • Published : 2016.08.25

Abstract

This paper addresses a formation control problem for a phugoid model-based multi-agent system in discrete time by using a Takagi-Sugeno (T-S) fuzzy model-based controller design technique. The concerned discrete-time model is obtained by Euler's method. A T-S fuzzy model is constructed through a feedback linearization. A fuzzy controller is then designed to stabilize the T-S fuzzy model. Design condition is presented in the linear matrix inequality format.

본 논문은 이산시간 장주기모델로 구성된 다개체시스템의 타카기-수게노(Takagi-Sugeno: T-S) 퍼지 군집제어 기법을 제안한다. 이산시간 모델은 오일러(Euler) 방법을 이용하여 유도한다. 이에 대한 T-S 퍼지 모델은 피드백 선형화 기법을 통해 구성하며, 이를 점근적으로 안정화하기 위한 퍼지제어기를 설계한다. 제어기 설계조건은 선형행렬부등식의 형태로 표현된다.

Keywords

References

  1. J. J. Bertin and M. L. Smith, Aerodynamics for Engineers, Prentice Hall, Englewood Cliffs, NJ, 1979.
  2. P. Bhatta and N. E. Leonard, "A Lyapunov function for vehicles with lift and drag: Stability of gliding," in Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, pp. 4101-4106.
  3. J. G. Graver, "Underwater gliders: Dynamics, control and design," Ph.D. dissertation, Princeton University, 2005.
  4. J. H. Moon, S. C. Jee, and H. J. Lee, "Output-feedback control of underwater gliders by buoyancy and pitching moment control: Feedback linearization approach," International Journal of Control, Automation and Systems, vol. 14, no. 1, pp. 255-262, 2016. https://doi.org/10.1007/s12555-015-0047-6
  5. P. Bhatta and N. E. Leonard, "Nonlinear gliding stability and control for vehicles with hydrodynamic forcing," Automatica, vol. 44, pp. 1240-1250, 2008. https://doi.org/10.1016/j.automatica.2007.10.006
  6. Z. Li, X. Liu, P. Lin, and W. Ren, "Consensus of linear multiagent systems with reduced-order observer-based protocols," Systems & Control Letters, vol. 60, pp. 510-516, 2011. https://doi.org/10.1016/j.sysconle.2011.04.008
  7. H. S. Kim, Y. H. Joo, and J. B. Park, "Formation control for swarm robots using artificial potential field," Journal of Korean Institute of Intelligent Systems, vol. 22, pp. 476-480, 2012. https://doi.org/10.5391/JKIIS.2012.22.4.476
  8. H. Jung and D. H. Kim, "Rank-based formation for multiple robots in a local coordinate system," Journal of Korean Institute of Intelligent Systems, vol. 25, pp. 42-47, 2015. https://doi.org/10.5391/JKIIS.2015.25.1.042
  9. F. Giulietti, L. Pollini, and M. Innocenti, "Autonomous formation flight," IEEE Control Systems Magazine, vol. 20, pp. 34-44, 2000. https://doi.org/10.1109/37.887447
  10. A. Zecevic and D. Siljak, "A new approach to control design with overlapping information structure constraints," Automatica, vol. 41, pp. 265-272, 2005. https://doi.org/10.1016/j.automatica.2004.09.011
  11. M. H. Kim, H. J. Lee, J. B. Park, D. B. Cha, and Y. H. Joo, "A decentralized control technique for experimental nonlinear helicopter systems," Journal of Korean Institute of Intelligent Systems, vol. 12, pp. 80-84, 2002. https://doi.org/10.5391/JKIIS.2002.12.1.080
  12. K. Tanaka, T. Ikeda, and H. Wang, "Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs," IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, 1998. https://doi.org/10.1109/91.669023
  13. F. W. Lanchester, Aerodonetics, London: A. Constable & Company Limited, 1908.
  14. J. Nakamura, Applied Numerical Methods with Software, Prentice Hall PTR, Upper Saddle River, NJ, 1990.
  15. D. Nesic, A. R. Teel, and P. V. Kokotovic, "Sufficient conditions for stabilization of sampled-data nonlinear systems via discretetime approximations," Systems & Control Letters, vol. 38, pp. 259-270, 1999. https://doi.org/10.1016/S0167-6911(99)00073-0
  16. H. J. Lee and D. W. Kim, "Intelligent digital redesign revisited: Approximate discretization and stability limitation," Fuzzy Sets and Systems, vol. 159, pp. 3221-3231, 2008. https://doi.org/10.1016/j.fss.2008.05.023
  17. H. J. Lee and D. W. Kim, "Performance recoverable intelligent digital redesign for fuzzy tracking controllers," Information Sciences, vol. 326, pp. 350-367, 2016. https://doi.org/10.1016/j.ins.2015.08.003
  18. J. H. Moon and H. J. Lee, "Performance recovery of intelligent digital redesign for observer-based output feedback under immeasurable premise variables," IET Control Theory and Applications, vol. 9, no. 12, pp. 1846-1856, 2015. https://doi.org/10.1049/iet-cta.2014.1152
  19. K. Tanaka and H. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley-Interscience, 2001.
  20. S. C. Jee and H. J. Lee, "Sampled-data fault detection and isolation for nonlinear systems in T-S form: An approximate model approach," Fuzzy Sets and Systems, vol. 297, pp. 112-127, 2016. https://doi.org/10.1016/j.fss.2015.11.012