• Title/Summary/Keyword: Takagi-Sugeno Fuzzy model

Search Result 242, Processing Time 0.036 seconds

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

Electromagnetic actuator design for the control of light structures

  • Der Hagopian, Johan;Mahfoud, Jarir
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • An ElectroMagnetic Actuator (EMA) is designed and assessed numerically and experimentally. The EMA has the advantage to be without contact with the structure so it could be applied to light and small mechanism. Nevertheless, the open-loop instability and the nonlinear dynamic behavior with respect to the excitation frequency could limit its application field. The EMA is designed and dimensioned as a function of the experimental structure to be controlled. An inverse model of the EMA is proposed in order to implement a linear action block for the used frequency range. The control strategy is a fuzzy controller with displacements and velocities as inputs. A fuzzy controller of Takagi-Sugeno type is used. The air gap is estimated by using a modal approximation of the displacements issued from all measurements. Several configurations of control are assessed by using numerical simulations. The block diagram used for numerical simulations is implemented under Dspace$^{(R)}$ environment. The implemented controller was tested experimentally in the context of impact perturbations. The results obtained show the effectiveness of the developed procedures and the robustness of the implemented control.

Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms

  • Askari, Mohsen;Li, Jianchun;Samali, Bijan
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1005-1028
    • /
    • 2016
  • Two novel semi-active control methods for a seismically excited nonlinear benchmark building equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the required voltage input for the damper to produce such desired control force is achieved using two different methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage regulator introduced here works based on the maximum and minimum capacities of MR damper at each time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events, compared with the passive systems and performs better than original and Modified clipped optimal controller systems, known as COC and MCOC.

T-S Fuzzy-Model-Based Robust Speed Controller Design of Autonomous Underwater Vehicles (무인 잠수정의 T-S 퍼지 모델 기반 강인 속도 제어기 설계)

  • Youn, Young-Jun;Kim, Do-Wan;Lee, Ho-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1946-1947
    • /
    • 2011
  • 본 논문은 파라미터의 불확실성을 포함한 비선형 무인 잠수정(autonomous underwater vehicles: AUVs)의 속도 제어를 위한 강인 퍼지 제어기를 제안한다. 효율적이고 안정적인 접근을 위해 불확실성을 포함한 비선형 무인 잠수정의 속도 시스템은 타카기-수게노(Takagi-Sugeno: T-S) 퍼지 모델로 표현된다. 리아푸노프(Lyapunov) 안정도 이론을 이용하여, 무인 잠수정의 제어 성능을 보장하는 선형 행렬 부등식(linear matrix inequality: LMI) 형태의 제어기 설계 조건을 유도한다. 제안된 강인 속도 제어기 성능의 유효성을 검증하기 위해 모의실험을 수행한다.

  • PDF

Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series (Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계)

  • Sung Hwa Chang;Park Jin Bae;Go Sung Hyun;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.881-886
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent tile complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of tile digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

Sliding Mode Observer for Fuzzy System: An LMI Approach (LMI를 이용한 퍼지 시스템의 슬라이딩 모드 관측기 설계)

  • Song Min-Kook;Joo Young-Hoon;Park Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.506-511
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

Active Noise Control by ANFIS for Unpredictable Secondary Path (불예측적 이차경로에 대한 ANFIS를 이용한 능동소음제어)

  • Kim, Eung-Ju;Choi, Won-Seock;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1964-1966
    • /
    • 2001
  • Active Noise control(ANC) is rapidly becoming the most effective way to reduce noises that can otherwise be very difficult and expensive to control. This research presents ANFIS (Adaptive Network Fuzzy Inference System) controller for adaptively noise cancelling in a duct. ANC system generates secondary control sound pressure with same amplitude and with opposite phase as noise to be eliminated. ANFIS controller is trained to optimize its parameters for adaptively cancelling noise. That is ANFIS train its parameters by gradient descent and LSE method so called hybrid method. This paper present ANFIS in active noise control which provides an improvement convergence speed and limitation of linearity condition. It can model nonlinear functions of arbitrary complexity and ANFIS can construct an input-ouput mapping based on both human knowledge in the form of Takagi and Sugeno's fuzzy if-then rules and stipulated input-output data pairs. This paper also shows that the proposed ANFIS active noise control system successfully cancelled noise.

  • PDF

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Design of Fuzzy Model-based Multi-objective Controller and Its Application to MAGLEV ATO system (퍼지 모델 기반 다목적 제어기의 설계와 자기부상열차 자동운전시스템에의 적용)

  • 강동오;양세현;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.211-217
    • /
    • 1998
  • Many practical control problems for the complex, uncertain or large-scale plants, need to simultaneously achieve a number of objectives, which may conflict or compete with each other. If the conventional optimization methods are applied to solve these control problems, the solution process may be time-consuming and the resulting solution would ofter lose its original meaning of optimality. Nevertheless, the human operators usually performs satisfactory results based on their qualitative and heuristic knowledge. In this paper, we investigate the control strategies of the human operators, and propose a fuzzy model-based multi-objective satisfactory controller. We also apply it to the automatic train operation(ATO) system for the magnetically levitated vehicles(MAGLEV). One of the human operator's strategies is to predict the control result in order to find the meaningful solution. In this paper, Takagi-Sugeno fuzzy model is used to simulated the prediction procedure. Another str tegy is to evaluate the multiple objectives with respect to their own standards. To realize this strategy, we propose the concept of a satisfactory solution and a satisfactory control scheme. The MAGLEV train is a typical example of the uncertain, complex and large-scale plants. Moreover, the ATO system has to satisfy multiple objectives, such as seed pattern tracking, stop gap accuracy, safety and riding comfort. In this paper, the speed pattern tracking controller and the automatic stop controller of the ATO system is designed based on the proposed control scheme. The effectiveness of the ATO system based on the proposed scheme is shown by the experiments with a rotary test bed and a real MAGLEV train.

  • PDF

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.