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Intelligent Digital Redesign for Uncertain Nonlinear Systems
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Abstract

This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based
controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time
controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design
problems viewed as a convex optimization problem that we minimize the error of the norm bounds between
nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear
system’s uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a
continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason.
Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of
linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to
guarantee the stability and effectiveness of the proposed method.

Key Words : Chaotic Lorentz system, uncertain nonlinear systems, intelligent digital redesign, T-S fuzzy model,
power series,

1. Introduction and digital implementation of a continuous-time un-
certain linear system, it is necessary to find an equiv-
Many complex dynamical systems, including chaotic alent discrete-time uncertain model. A digital im-
systems, comprise uncertain plants. So we have many Plementation of the continuous-time controller is indeed
technical problem to control the whole systems. The un-  Very desirable when the designed continuous-time con-
certainty about the plant arises from unmodelled dynam-  troller uses some recent and advanced control algorithm.
ics, sensor noises, parameter variations, etc. Generally, So digital control of continuous-time systems have been
complex dynamic systems should be described by a con-  1More 1nter§§t. . . o .
tinuous-time and/or discrete-time uncertain framework. The efficient approach to design digital controller is
As advanced digital implements, represented computer called digital redes1'gn, which was first pr'oposed b}’ Kuo.
and microprocessor, many analog systems are converted ~And Joo et 1a[10] first apply digital redesign technique to

to digital systems. For digital simulation, digital control ~ complex nonlinear systems, and we call this new ap-
proach to intelligent digital redesign. Intelligent digital

redesign technique is that complex nonlinear system has
analyzed by using Takagi-Sugeno (T-S) fuzzy model
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which combines the fuzzy inference rules with some lo-
cal linear state-space models for a global representation
of the system dynamics. Lee et la[3] proposed new in-
telligent digital redesign of global approach for the TS
fuzzy systems which are represented as a convex opti-
mization problem of the norm distance between non-
linearly interpolated linear operators to be matched, and
thus can be cast into LMI framework. But there has
unsolved problem, which represented by uncertainty,
Although, Chang et la[11] solve the uncertain nonlinear
system by using intelligent digital redesign, but this
method is not global approach. Because of uncertain ex-
ponential parts, it is too difficult to apply intelligent digi-
tal redesign technique which includes uncertain parts.

In this brief, we further develop a systematic method
for the intelligent digital redesign of a hybrid state space
TS fuzzy-model-based controller for sampled-data con-
trol of continuous- time complex dynamical systems by
using Power series. Developing the uncertain nonlinear
systems, we face the problem of exponential terms
which has uncertain part. Genetic Power series are able
to convert the exponential terms to easily forms, so the
complex problems are solved.

This paper is organized as follows. Section 2 in-
troduces a brief overview of a continuous time TS fuzzy
model and its discretized form, sampled-data parts. In
Section 3, we proposed the method of intelligent digital
redesign of global approach so that we should solve the
uncertain nonlinear parts. Then, in Section 4, the chaotic
Lorenz system is used as a example for the proposed
method. Funally, this paper concludes with Section 5.

2. Preliminaries

Consider a class of continuous—time nonlinear systems
that contain parametric uncertainties, in the following
form:

x(0) = fx(0) + A (x(0) + (g€x(0) + Ag(x(D)u(?) (1)

where df)eR’ is the state vector, #(t) € R™ is the con-
trol input vector, f(x(¢)) e R" and g(x(*)) € R"are non-
linear vector functions, and Af(x(1)), Ag(x(+)) are un-
certain vector functions. This nonlinear system can be
represented by a TS fuzzy model, also with parametric
uncertainties. The TS fuzzy model which is a convenient
and powerful tool to handle such nonlinear system is a
combination of the fuzzy inference rules and some local
linear uncertain systems. The jth rule of T-S fuzzy
system is formulated in the following form:

IF - THEN Form:
R :IF x,(t) is abour T, and ... and x,(t) is about T,
THEN %,(t) = (4, + A4)x, () + (B, + ABYu (1),

where =12, ..,4q,
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Defuzzified Form :

50 = 34, (GO)A, + AAIR) + (B, + ABu(o),
where

o) = [T Gy ooy = 25D
SoGm @

where T,(x,()) is the grade of membership of *,(t) in

T} Some basic properties of @{f) are:

w(x(t) =0, ia}, (x{(9) >0,
i=l
It is clear that

B 20, > a0 =1,

i=4L2,..,q @)

We use the following fuzzy-model-based controller
structure which is represented by either of the following
forms: .

IF - THEN Form:
IF z,(t)is F and --- and z,(t) is F,'
THEN u () = - K x,(t),
Defuzzified Form:
u (1) = - K, ()x.(0)

i=12,..,q9
B)

where K., are a feedback gain in the ith subspace,

K= Z” Ke The resulting continuous-time closed-loop
TS fuzzy system becomes

%)= Ziﬂf (N (24 + A4) + (B, + AB)K, }x.(2). ©®
i=l j=1
Next we discuss the discretization of the con-
tinuous—time T-S fuzzy system. Consider a class of T-S
fuzzy system governed by

5,0 = 3w GO, + 84)%, O + (B, + 8B)u, 0} ()

where #,()=4,(7) is the piecewise- constant control
input vector to be determined in the time interval
[AT, kT +T), where T >0 is a sampling period. For the
digital control of the continuous-time TS fuzzy system,
the digital fuzzy-model-based controller is employed. Let
the fuzzy rule of the digital control law for the system
(7) take the following form:

R':IF z,(kT) is about I} and ... and z,(kT) is about T}’
THEN u,(t) = K,'x,(kT) ()

for te[kT, kT +T), where K, is the digital control
gain matrix to be redesigned for the ith rule, and the
overall control law is given by

us©) = X iR, x, (6T) °



mrtemﬂkT+T)

The digital redesign problem is to find digital con-
troller gains from the analog gains by using close
matching theorem. Thus it is necessary to convert the
TS fuzzy system into discrete-time version for deriva—
tion of the state-matching condition. But the defuzzifed
output of the TS fuzzy system, which is above men-
tioned, is not LTI but implicitly time-varing [2]. Also, it
is further desired to maintain the polytopic structure if
the discretized TS fuzzy system for the construction of
the digital fuzzy-modei-based controller. These reasons
prevent to discretize the closed-loop TS fuzzy system,
so we need appropriate assumption.

Assumption 1{3]: Assume that the firing strength of
the ith rule, #(z(*) is approximated by its value at time
kT, that is

#(2(0)) = 1, (2(kT))

for t €[kT, kT + T). Consequently, the nonlinear matrices
3 eena

o and g” "(Z(t))B", respectively, over any inter—
val [AT, kT +T). If a sufficiently small sampling period
T 1is chosen, Assumption 1 is reasonable.

Thanks to Assumption 1, we efficiently derive the

discretization of TS fuzzy system (7),

X, (kT +T) = ii (2T, (zKT)(G + Ak, )%, (KT)

i=l j=1

(10)
where

G = exp(4, + A4)T,
A= je“ * 7B AB)dT = (G ~ I,)(4, + Ad)" (B + AB)
The pointwise dynamical behavior of the con—

tinuous—time closed-loop TS fuzzy system (6) cam also
be approximately discretized as

% (KT +T) = 33 s @0, ()@, *T)

i=l j=

(11
where @, =exp{((4, + Ad) + (B, + AB)K,/)T}

And A4, AB; are the unknown and possibly time-var-
ing matrices representing the uncertainties of the
system. Since the plant rules have time-varying un-—
certain matrices, it is not easy to design the controller
gain matrices. In order to find these gain matrices, X,
we should remove the uncertain matrices under some
reasonable assumptions.

Assumption 2[11): The uncertainty matrices A4, and
AB, are norm bounded and have the following struc-
tures:

(A4 AB]=DFW0IE, E,]

where D, E; and E, are predetermined constant
real matrices of appropriate dimensions, which represent

 EEAMEE e vUE Al2dEe Xs¥ CIXE MAH

the structures of the and
F()eR™ is an unknown matrix function with

Lebesque-measurable elements and satisfies

system uncertainties,

FIOF@0 <1

In addition, we also note that the uncertain matrices
A4, and AB can be represented in an interval form a4’
and AB/, where A4 =[A4;, A4] and AB/ =[AB,, ABi].
The interval arithmetic preliminaries can be found in
[12], [4].

3. Main Result

In this section, we develop the continuous-time fuz-
zy-model-based controller design algorithm and derive
an intelligent digital redesign procedure by global state
matching in a hybrid state~space setting. Our goal is to
develop an intelligent digital redesign technique for TS
fuzzy systems so that the global dynamical behavior of
(10) with the digitally redesigned fuzzy-model-based
controller may retain that of the closed-loop TS fuzzy
system with the existing analog fuzzy-model-based con-
troller, andthe stability of the digitally controlled TS fuz-
zy system is secured. To achieve this goal, we must
contain two condition, the one is ‘stability' and the other
is ' gain matching ‘.

Stability problem are linked the discretization of digi-
tally redesigned TS fuzzy model. By using the method of
the sense of Lyapunov criterion, the digitally controlled
T-S fuzzy system (10) are guaranteed globally asymp-
totically stable. The concrete problems are following:

Problem 1-1 (Stability problem(3]): If there exist sym-

metric positive definite matrix @, symmetric positive-

semidefinite matrix O, constant matrices F;, following 2
equations are proper reasons:

-Q+(g-1)0 *
N . <0, Lji=12,..,9
6o+HU, -0 12)
-Q-0 *
GO+ AU, +Gg+AY, <0, i=l.,g-Lj=i+l...q
- @ (13)

where G = exp(4 + AT,

H = [ (B + AB)dz = (G - 1,)(4, + A)'(B, + AB)

o

And the other is to design an equivalent digital fuz—
zy-model-based controller from the continuous-time
counterpart, so we take a global digital redesign
approach.

Problem 2(7 - Suboptimal Global Intelligent Digital
Redesign Problem) [3] : Given a well-constructed gain
K, for the stabilizing analog fuzzy—-mod-
for the

matrices
el-based controller (11), find gain matrices
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digital fuzzy-model-based control law (10) such that the
following constraints are satified.

Minimize ¥ subject to ‘q’/ -G - H"Kd!“ <7

i,j=12,..,49, in the sense of the induced 2-norm dis-
tance measure.

_},Q ®
N N <0
[(I’,-,-Q -GQ-HU, -/ (14)
where @, = exp{((4, + A4) + (B, + AB)K/)T}

Notice that intelligent digital redesign problems be-
come a convex optimization problem, so those are nu-
merically solved by formulation in terms of LMiIs,
Theorem 1 and Theorem 2. But there are critical prob-
lems in these equations. The exponential uncertainty
termsG;, H,, and ®;are too complicated to solve, so we
need another theorem, the solutions of both exponential
and uncertainty. The distinct theorems are followed:

Theorem 1: The exponential uncertainty terms which
included the equation (14) are solved by

A

G ~ 1, + (4 + AT (15)
H, ~ (B, + AB)T (16)
@, ~ 1, + (4 + AT + (B, + AB)K,'T an
Proof) The general power series are these form:
. T?
exp(4T)y =1, + AT + 4, > + - 18)

As the above Power series, the equation (15) and (17)
is easily defined, but the control of second and the big-
ger terms are very difficult. In this brief, we assume
that these terms are approximate 0, when sampling time
should be sufficiently small. And equation (16) is that,

H,=(G, - 1)(4, + M) (B, + AB,)
~ (I, + (4 + AT — 1,)(A4, + A)" (B, + AB)
= (4, + AL)(A4, + A4) (B, + AB)T
= (B, + AB)T

The exponential terms are easily defined by Power

series, but the uncertainty term A4, AB, are still
discussed. Following Lemma can help us to solve these
difficulties.

Lemma 1 [2] @ Given constant symmetric matrices
N,O, and L of appropriate dimensions, the following
two inequalities are equivalent:

(@ 0>0, N+I'OL <0,

N -o!' L
<0 or < 0.
b)) |L -0 - r o

Lemma 2 [2] : Given constant matrices D and F,
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and a symmetric constant matrix S of appropriate di-
mensions, the following inequality holds:

S+ DFE + E'TF'D" <0,

where F satisfies F'F <1, if and only if for some
>0,

- {a"E}

S+[e"E" &D] D <0.

Lemma 1 is one of the most basic and popular tool in

converting nonlinear matrix inequalities to LMI. And by

introducing Lemma 2, we deal with the uncertain non-

linear system more and easily. By applying these
Lemma, we have following Theorem.

Theorem 2(Globally state matching): If there exist

symmetric positive definite matrix € symmetric pos—
itive-semidefinite matrix O, constant matrices F; and a

possibly small positive scalar such that the following
generalized eigenvalue problem (GEVP) has solutions:

Minimize
Q,0,F y  subject to
[ -Q+@g-pO0 * * *
Q+A0T+BFT -0 * *
EQT+EFT o g1 + | <0
L 0 2*D] 0 —gl (19)
r -0-0 * * *
Q+%(A7.Q+BiF,+AjQ+BjF)T -0 * *
<0
%(EI,Q +E,F, +E QT+E, F)T 0 —gd *
L 0 D,»T + DjT 0 _ g;,-l (20)
M -0 * * *
BK'OT -BFT -j * o x o
E,TK) —E,IF, 0 —gd *
0 2*D] 0 -e,l @D

The LMI form, (19) and (20) are solution of stability
problem and the equation of (21) is the state matching
terms.

4. Computer Simulation

In this section, we discuss the exact TS fuzzy mod-
eling of the chaotic Lorenz system and prove the effec-
tiveness and stabilization of the proposed intelligent digi-
tal redesign method. The dynamics of the controlled
chaotic Lorenz system is described by

X —-ox + oy 1
d
| yi=

-y- +10
dt oy
z xy—bz 0

(22)
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where o,7,b>0 are parameters (o is the Prandtl
number, 7 is the Rayleigh number, and b is a scaling
constant). We further assume that system parameters
0,7 and b have additive uncertainites, i.e,, ¢ =07, + Ao,
¥y =%, +t Ay, b=5b,+Ab and the initial condition parame-
ter is tha (G0 7o, by) = (10, 28, (8/3)), where the un-

2 o
certain parameters are all bounded within 30% of their 7
nominal values.
The corresponding TS fuzzy model of the system in is
expressed as follows [5]:
IF xis F,
THEN (1) = (4y; + A4) x () + Bu (1), =12 (23) o7 02 o3 04 05 06 o7 o8
time (sec)
where x, =[x y z]’ Fig. 1. States of the controlled Lorenz system with
-6, 0, 0 -6, o, 0 T=0.01{Dotted line: cd(j)n'tinluousftirr;e system, Solid line:
1tal system
4 = Yo -1 -M,|, A4, = 7o -1 -M, & Y
0 M, -b, 0 M, -b 50-
and A4, = D,FE, is given by ,
-03 0 0 ’
D=D,=| 0 03 0
0 0 03 s
o, -0, 0 3
E,=E, =| 7 0 0
0 0 b, »
-150-
or
+03 +03 0 2004 0.1 0.2 03 0.4 0.5 06 o7 0.8
A, e Ad' = 84 0 0 i=12 time (sec)
0 +08 Fig. 2. Control input with T=0.01(Dotted line:

continuous-time system, Solid line: digital system)
The membership functions are

Fll=—x+M2, F12 x-M,
M, - M, M, -M, (24)

and (M,, M,) = (-20, 30)

For digital simulation of the chaotic Lorenz systems,
we first gather the gain of digital system. In Theorem 2,
we change the problem of state matching and stability to
IMI framework, so we approach the solution of Lorenz
model more easily. The digital gain are following.

X 1. gAE o= | X3 Xg3

Table 1. Digital Gain " L . . ' ‘ 3
F{l} 72351 165052 02199 0 0.1 0.2 0.3 time().(:ec) 0.5 0.6 0.7 0.8
F{2} 7.2333 16.5047 -0.1911 Fig. 3. States of the controlled Lorenz system with

T=0.02 (Dotted line: continuous-time system, Solid line:

For proving the effectiveness and stability of the pro- digital system)

posed method, we need the comparison of two systems.
The results are follows.
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control

-250 .
2] 01 0.2 0.3 0.4 0.5 0.6 07 0.8

time (sec)

8 4. T=0.02 o o, Ao 4H
Fig. 4. Control input with T=0.02(Dotted line:
continuous—time system, Solid line: digital system)

5. Conclusion

In this paper, we represent intelligent digital redesign
method of global approach for uncertain nonlinear which
analyzed by hybrid state space fuzzy-model-based
controllers. For effectiveness and stabilization of con-
tinuous—time uncertain nonlinear systems under dis-
crete—time controller, we use TS fuzzy model. Thank to
these fuzzy model, we are easily construct the solution
of nonlinear system. Also, by applying Taylor series to
whole system, the uncertainty terms are easily defined.
Finally, for LMI framework, we gather the gain of digi-
tal controller. The effectiveness and stability of proposed
systems are guaranteed by applying the develop method
to Chaotic Lorenz system.
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