• Title/Summary/Keyword: Takagi-Sugeno

Search Result 335, Processing Time 0.024 seconds

Design of Buoyancy and Moment Controllers of a Underwater Glider Based on a T-S Fuzzy Model (T-S 퍼지 모델 기반 수중글라이더의 부력 및 모멘트 제어기 설계)

  • Lee, Gyeoung Hak;Kim, Do Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2037-2045
    • /
    • 2016
  • This paper presents a fuzzy-model-based design approach to the buoyancy and moment controls of a class of nonlinear underwater glider. Through the linearization and the sector nonlinearity methodologies, the underwater glider dynamics is represented by a Takagi-Sugeno (T-S) fuzzy model. Sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop system in the format of linear matrix inequality (LMI). Simulation results demonstrate the effectiveness of the proposed buoyancy and moment controllers for the underwater glider.

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

Wide-Range Stabilization Control of Underactuated Robot using Fuzzy Controller (퍼지 제어기를 이용한 Underactuated Robot의 광범위 제어)

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Choi, Hyoun-Chul;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2408-2410
    • /
    • 2001
  • This paper presents the control of an underactuated two-link robot called the Pendubot. Combining linearized state feedback control with Takagi-Sugeno(T-S) fuzzy controller wide-range stabilization of Pendulum is achieved. The local stabilization controler is designed by linearinzing the dynamic equations about the several desired set point and using LQR(Linear Quadratic Regulator) techniques. Takagi-Sugeno methodology is used to control the nonlinear models near different operation points. Fuzzy controller is obtained by the fuzzy blending of the local controllers. The paper includes a description of the algorithm as well as real time experimental results for the Pendubot.

  • PDF

Fuzzy Controller Design for Water level Control of Power Plant Drum (화력발전소 드럼의 수위제어를 위한 퍼지 제어기의 설계)

  • 이상혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • In this paper, we propose a fuzzy controller design method for the water level control of the power plant drum in the form of nominimum phase system The proposed method is based on T. Takagi and H. Sugeno's fuzzy model. And we illustrate the improved characteristics as the simulation results, comparing with the conventional the PID and LQ controller design methods.

Application of Fuzzy Integral Control for Output Regulation of Asymmetric Half-Bridge DC/DC Converter with Current Doubler Rectifier

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • This paper considers the problem of regulating the output voltage of a current doubler rectified asymmetric half-bridge (CDRAHB) DC/DC converter via fuzzy integral control. First, we model the dynamic characteristics of the CDRAHB converter with the state-space averaging method, and after introducing an additional integral state of the output regulation error, we obtain the Takagi-Sugeno (TS) fuzzy model for the augmented system. Second, the concept of parallel distributed compensation is applied to the design of the TS fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, numerical simulations of the considered design method are compared to those of the conventional method, in which a compensated error amplifier is designed for the stability of the feedback control loop.

Allocations and Robust ℋ Fuzzy Control for Waypoints Tracking of Large Displacement Unmanned Underwater Vehicles (대형급 무인잠수정의 임무의 중요성에 따른 목표 경로점 선정 및 제어를 위한 T-S 퍼지모델 기반 강인 ℋ 제어기 설계)

  • Kang, Hyoung Bin;Lee, Ho Jae;Kim, Sung Hoon;Park, Ho Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.402-408
    • /
    • 2017
  • This paper deals with a robust ${\mathfrak{H}}_{\infty}$ controller design problem for waypoints tracking of large displacement unmanned underwater vehicles (LDUUVs) in Takagi-Sugeno fuzzy form. The LDUUV model uses a rudder to control its horizontal motion. We determine the order of waypoints based on their priorities and consider only surge force. A fuzzy controller in state-feedback form is taken and its design condition of is represented in terms of linear matrix inequalities. A numerical simulation is included to show the effectiveness of the theoretical development.

Sampled-data Fuzzy Tracking Control of Nonlinear Control Systems (비선형 제어 시스템의 샘플치 퍼지 추적 제어)

  • Kim, Han Sol;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.159-164
    • /
    • 2017
  • In this paper, we propose a method of designing the sampled-data tracking controller for nonlinear systems expressed by the Takagi-Sugeno (T-S) fuzzy model. A sufficient condition that asymptotically stabilizes the state error between the linear reference model and the T-S fuzzy model is derived in terms of linear matrix inequalities. To this end, error dynamics are constructed, and the exact discretization method and the Lyapunov stability theory are employed in this paper. Finally, we validate the proposed method through the simulation example.