• Title/Summary/Keyword: Table movement accuracy

Search Result 22, Processing Time 0.022 seconds

A Study on the Positioning Accuracy and table Deflection by Load (하중에 의한 위치결정오차와 테이블 처짐에 관한 연구)

  • 전언찬
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.98-104
    • /
    • 1999
  • As the accuracy of manufactured goods needed high accuracy processing has made the efficiency of NC and measurement technology development, the innovation of machine tools has influence the development of the semi-conductor and optical technology. The movement errors can be expressed in terms of yaw, roll an pitch etc. In the case of expanding the error range, static, dynamic and servo gain errors can be included. Machining center might have twenty-one movement errs including three types of joint errors. Those errors have been measured on the condition of just loading of standard table. Regarding these measuring methods, the mechanical compliance of the structure has not been considered. In this paper, therefor, the influences of the additional load on the positioning accuracy are investigated. The results and the techniques proposed in this study can be considered very effective and useful to compensate more correctly the positioning motion.

  • PDF

Proposal of CT Simulator Quality Assurance Items (전산화단층 모의치료장치의 정도관리 항목 제안)

  • Kim, Yon-Lae;Yoon, Young-Woo;Jung, Jae-Yong;Lee, Jeong-Woo;Chung, Jin-Beom
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.367-373
    • /
    • 2021
  • A quality assurance of computed tomography(CT) have done seven items that were water attenuation coefficient, noise, homogeneity, spatial resolution, contrast resolution, slice thickness, artifact using by standard phantom. But there is no quality assurance items and methods for CT simulator at domestic institutions yet. Therefore the study aimed to access the CT dose index(CTDI), table tilting, image distortion, laser accuracy, table movement accuracy and CT seven items for CT simulator quality assurance. The CTDI at the center of the head phantom was 0.81 for 80 kVp, 1.55 for 100 kVp, 2.50 for 120 mm, 0.22 for 80 kVp at the center of the body phantom, 0.469 for 100 kVp, and 0.81 for 120 kVp. The table tilting was within the tolerance range of ±1.0° or less. Image distortion had 1 mm distortion in the left and right images based on the center, and the laser accuracy was measured within ±2 mm tolerance. The purpose of this study is to improve the quality assurance items suitable for the current situation in Korea in order to protect the normal tissues during the radiation treatment process and manage the CT simulator that is implemented to find the location of the tumor more clearly. In order to improve the accuracy of the CT simulator when looking at the results, the error range of each item should be small. It is hoped that the quality assurance items of the CT simulator will be improved by suggesting the quality assurance direction of the CT simulator in this study, and the results of radiation therapy will also improve.

The effect on the position precision by load in M.C. (머시닝 센터에서 하중이 위치결정정밀도에 미치는 영향)

  • 이승수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.143-147
    • /
    • 1998
  • As the accuracy of manufactured goods needed high-accuracy processing has made the efficiency of NC and measurment technology develop, the innovation of machine tools has influence the development of the semi-conductor and optical technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics - Stylus instrument method, STM, SEM, Laser interferometer method - which are used for measuring the movement accuracy of machine tools. The movement error factors in movement accuracy are expressed as yaw, roll, and pitch etc. Machining center has 21 movement error factors including of 3 axies joint errors because that has 3 axies and has been measured as the standard of the unloaded condition until now inspite of getting static, dynamic, and servo-gain errors in the case of expending the error range. Therefore, this study tries to measure position accuracy according to loading on the X-Y table of the machining center.

  • PDF

The Accuracy of the Table Movement During a Whole Body Scan (전신 영상 검사 시행 시 테이블 이동속도의 정확성에 관한 연구)

  • Lee, Ju-Young;Jung, Woo-Young;Jung, Eun-Mi;Dong, Kyung-Rae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.86-91
    • /
    • 2009
  • Purpose: The whole body scan in Nuclear Medicine is a widely accepted examination and procedure. Especially, it is mainly used in bone, I-131, MIBI, and HMPAO WBC scans. The diverse uses of the whole body scan range from the HMPAO WBC scan with a speed of 13cm/min, to a whole body bone scan using the Onco. Flash technique with a speed of 30cm/min. The accuracy of table movement has a strong correlation with the image quality, and inaccuracy of speed could negatively affect the image quality. The purpose of this study is to evaluate the accuracy of the table movement while considering the influence of the age of the equipment and the variability in the weight of the patients. Material and Methods: The study was conducted using two of Seoul Asan Medical Center's SIEMENS gamma cameras which are commonly used in our whole body study. The first one is the oldest gamma camera, an ECAM plus (installed in 2000), and the last is brand new one, a SYMBIA T2 (installed in 2008). Three trials were conducted with the tables moving at a different speed each time; 10, 15 and 30 cm/min. The tables' speeds were measured by checking how long it took for the table to move 10cm, and this was repeated every 10cm until the table reached 100 cm. With an average body weight of the patients of about 60~70 kg, the table speed was measured with weights of 0 kg, 66 kg and 110 kg placed on the table, then compared among conditions. Results: The coefficient of variance (CV) of the ECAM plus showed 1.23, 1.42, 2.02 respectively when the table movement speeds were set at 10, 15, and 30 centimeters per minute. Under the same conditions, the SYMBIA T2 showed 1.23, 1.83 and 2.28 respectively. As table movement speed more, the variance of CV as the speed increases. When the patient body weight was set to 0, 66 and 110kg, the CV values of both cameras showed 0.96, 1.45, 2.08 (0 Kg), 1.32, 1.72, 2.27 (66 Kg) and 1.37, 1.73, 2.14 (110 Kg). There was no significant difference (p>0.05) in 95 percent of confidence intervals and measured CV values were acceptable. However, the CV value of the SYMBIA T2 was relatively larger than the ECAM plus. Conclusion: The scan speed of the whole body scan is predetermined based on which examination is being performed. It is possible for the accuracy of the speed to be affected, such as the age of the equipment, the state of the bearings or the weight of a patient. These factors can have a negative impact on the diagnostic consistency and the image quality. Therefore, periodic quality control should be needed on the gamma cameras currently being used, focusing on the table movement speed in order to maintain accuracy and reproducibility.

  • PDF

The Study on Table Deflection by Stationary State and Feedrate at Loaded (하중 적재시 정지상태 및 이송시 하중에 따른 테이블 처짐에 관한 연구)

  • Lee Seung Soo;Kim Min Ju;Kim Soon Kyung;Seo Sang Ha;Jeon Eon Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.41-47
    • /
    • 2004
  • This study is aimed to measure the deflection of loaded table on machine tool. The deflection rate is measured then the table is in a stationary state and is moved. In conclusion we have found that the more load increases, the more the table deflections. Also, we have found that the deflection rate increases in accordance with the speed of movement. Therefore, we have concluded that inspection of machine tool should be done considering the weight of load and the speed of movement. However, since the condition of accuracy test for domestic brand of machine tool is defined as unloaded case, measures should be explored only for loaded case.

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

Efficiency Evaluation of CT Simulator QA Phantom (전산화 단층촬영 모의치료기 정도관리 팬텀의 유용성 평가)

  • Hwang, Se-Ha;Min, Je-Sun;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Purpose: The purpose is to evaluate efficiency of the CT simulator QA phantom manufactured for daily QA. Materials and Methods: We made holes ($1{\times}100{\times}1\;mm$) to verify accuracy between image and real measurement in polystyrene phantom and made 1 mm holes to verify table movement accuracy at superior and inferior 100 mm to the center of the phantom and inserted radiopacity material. To evaluate laser alignment, we made cross mark on the right and left side at phantom and to evaluate CT number accuracy we made 3 cylindrical holes and inserted equivalence material of bone, water, air in them. After CT scanning the phantom, We evaluated accuracy between image and real measurement, accuracy of table movement, laser, and CT number using exposed image. Results: It was measured that the accuracy between image and real measurement was ${\pm}0.3\;mm$, table movement accuracy was ${\pm}0.3\;mm$, laser accuracy was ${\pm}0.5\;mm$ from 7th January to 7th March in 2008 as within the reference point ${\pm}1\;mm$. In the CT number accuracy of bone was ${\pm}10\;HU$, air was ${\pm}5\;HU$, water was ${\pm}5\;HU$ as within the reference point is ${\pm}10\;HU$. Conclusion: We was able to perform CT simulator QA and laser equipment QA more conveniently and fast using manufactured phantom at the same time. We will be able to make more accurate treatment plan that added to QA procedures using images at previous daily QA.

  • PDF

Kinetic Classification of Golf Swing Error (골프스윙오류의 운동역학적 분류)

  • Jeon, Chul-Woo;Hwang, In-Weong;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.95-103
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golf lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golf coaching methods. For this purpose, kinetic elements were divided into accuracy and power ones and therewith, the variables affecting such elements were identified. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The kinetic elements could be identified as accuracy, power and accuracy & power. Thus, setup and trajectory were classified into accuracy elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into accuracy & power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (6) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

Digital Position Measurement with MLPE of PET detector using a Small Number of Photosensors (적은 수의 광센서를 사용한 PET 검출기의 최대우도함수를 적용한 디지털 위치 측정)

  • Kang, Seunghun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2022
  • A detector using a small number of photosensors was designed, and the position of a scintillation pixel that interacted with gamma rays through a maximum likelihood position estimation(MLPE) was measured as a digital position. For this purpose, simulation was performed using DETECT2000, which can simulate the movement of light within the scintillator, and the accuracy of position measurement was evaluated. A detector was configured using a 6 × 6 scintillation pixel array and 4 photosensors, and a gamma ray event was generated at the center of each scintillation pixel to create a look-up table through the ratio of acquired light. The gamma-ray event generated at the new position was applied as the input value of the MLPE, and the positiion of the scintillation pixel was converted into a digital positiion after comparison with the look-up table. All scintillation pixels were evaluated, and as a result, a high accuracy of 99.1% was obtained. When this method is applied to the currently usesd system, it is concidered that the process of determining the position of the scintillation pixel will be simplified.