• Title/Summary/Keyword: TU-FLOW

Search Result 45, Processing Time 0.03 seconds

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

제주도지역 대수층들의 수직적 분포와 수리적 연결성

  • 고동찬;이대하;박기화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.17-20
    • /
    • 2002
  • The environmental tracers of $^3$H and NO$_3$ were investigated in terms of vertical connections between basaltic aquifers and underlying sedimentary formations of Seoguipo formation that is not found in eastern coastal area and U formation. In western coastal area, $^3$H shows values less than 0.5TU In the wells completed in Seoguipo formation whereas it is greater than 2TU in other area. For the wells in western area, NO$_3$ concentrations are below background level though the nearby land uses are mainly agricultural. The groundwater heads are much lower in eastern coastal area than western area in spite that recharge rate of eastern area is 1.7 times higher than that of western area. The basaltic aquifer is thicker by 70m in eastern coastal area than in western coastal area, which is insufficient to explain much lower groundwater heads in eastern area. These hydrogeological characteristics suggest that for the basaltic aquifers, the Seoguipo formation acts as a lower boundary which could limit downward groundwater flow in basaltic aquifers whereas the U formation is unlikely.

  • PDF

A Study on Flow Analysis and an Estimate of performance for HAWT by CFD (CFD에 의한 수평축 풍력발전용 터빈의 유동해석 및 성능예측에 관한 연구)

  • 김정환;김범석;김진구;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.906-913
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is to evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore. the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TU-Delft. The CFD results of which is somewhat consist with BEM results. under an error less than 10%.

A CLASS OF INVERSE CURVATURE FLOWS IN ℝn+1, II

  • Hu, Jin-Hua;Mao, Jing;Tu, Qiang;Wu, Di
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1299-1322
    • /
    • 2020
  • We consider closed, star-shaped, admissible hypersurfaces in ℝn+1 expanding along the flow Ẋ = |X|α-1 F, α ≤ 1, β > 0, and prove that for the case α ≤ 1, β > 0, α + β ≤ 2, this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case α ≤ 1, α + β > 2, if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.

Numerical Study of Bursting Jet in Two Tandem Bubbles (직렬 배열된 두 기포의 bursting jet에 대한 수치적 연구)

  • Lee, Chang Geol;Lee, Sun Youb;Ha, Cong-Tu;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.52-60
    • /
    • 2020
  • When a bubble reaches a free surface, a bursting of the bubble produces a high speed jet. Despite its practical importance, significant effort has been devoted to investigate a bursting jet by a single bubble near a free surface. In the present study, we perform numerical simulations of bubbles in a tandem arrangement at Bo=0.05. The configuration of the tandem bubbles is systematically varied by changing a radius of a following bubble (RF) and the gap distance between two bubbles (L). Compared to a single bubble case, we show that the bursting bubble in the tandem arrangement accelerates, and the jet velocity increases. Moreover, we find that a critical gap distance at which the jet velocity unexpectedly changes exists in the tandem case.

Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade (터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

Recharge mechanism using electromagnetic ground conductivity survey and tritium concentration analyses of groundwater in salt affected area, Northeast Thailand

  • Imaizumi Masayuki;Sukchan Somsaku;Ishida Satoshi;Tsuchihara Takeo;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.344-351
    • /
    • 2003
  • Hydrogeological survey and geochemical analysis were carried out in Phra Yun area, Northeast Thailand, which is a typical salt-affected area for an understanding of hydrogeological groundwater behaviours. Geological survey reveals the presence of G1 and F1 faults. Electromagnetic ground conductivity prospecting shows that the high conductivity zones of 15 mS/cm or more are distributed at underground of the G1 and F1 faults where saline groundwater is discharged. The distribution patterns of tritium concentration show that high tritium concentration zones of groundwater were recharged from pond and river. On the assumption that the annual average tritium concentration of precipitation in Northeast Thailand is same as tritium concentration of precipitation in Tokyo and groundwater flows as piston flow, the age of recharging precipitation of groundwater with 15 TU in 1997 could be estimated at 1967-1970 years. The velocity of groundwater flow was calculated to be $5.3{\times}10^{-7}\;m/s\;and\;2.1{\times}x10^{-6}\;m/s$ respectively from a duration time of 30 years and distance of groundwater flow 500m -2000m from the pond and river to the investigation wells. Because the estimated values of velocity of groundwater flow are compatible with the hydraulic conductivities, it is considered that 30 years is a reasonable period for recharging groundwater.

  • PDF

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger (원통-다관형 열교환기의 다관측 입출구 유동 특성의 실험적 연구)

  • Tu, Xin Cheng;Wang, Kai;Park, Seung-Ha;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.581-588
    • /
    • 2014
  • The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger.

Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H.;Rolon-Garrido, Victor H.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.203-211
    • /
    • 2009
  • In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.