DOI QR코드

DOI QR Code

Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger

원통-다관형 열교환기의 다관측 입출구 유동 특성의 실험적 연구

  • Tu, Xin Cheng (Grad. School of Mechanical and Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Wang, Kai (Res. Center for Aircraft Parts Tech., Gyeongsang Nat'l Univ.) ;
  • Park, Seung-Ha (Donghwa Entec Co. Ltd.) ;
  • Kim, Hyoung-Bum (Grad. School of Mechanical and Aerospace Engineering, Gyeongsang Nat'l Univ.)
  • 도흔승 (경상대학교 대학원 기계항공공학부) ;
  • 왕개 (경상대학교 항공기부품기술연구소) ;
  • 박승하 (동화엔텍(주)) ;
  • 김형범 (경상대학교 대학원 기계항공공학부)
  • Received : 2014.01.23
  • Accepted : 2014.04.21
  • Published : 2014.07.01

Abstract

The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger.

본 논문에서는 원통-다관형 열교환기의 다관측 유량의 분배도 향상을 위해 다공성 배플 유무에 따른 입구 및 출구부의 유동 특성을 실험적으로 연구하였다. 원통 및 다관측 유량의 분배성능은 원통-다관형 열교환기의 성능에 직간접적인 영향을 준다. 실험 연구를 위하여 원형 크기의 1/3로 축소한 실험 모델을 제작하였고, 60, 80, 90 LPM의 유량 조건에서 다공성 배플의 유무에 따른 다관측의 분배 성능을 입자화상속도기법을 이용한 입구 및 출구부의 속도장 측정을 통해 확인하였다. 연구로부터 절대 불균일 분배도를 계산하여 정량적으로 다공성 배플이 유량의 분배도에 주는 영향을 확인하였다. 측정 결과로부터 유량에 상관없이 배플을 설치하였을 경우 74%의 절대 불균일 분배도의 감소 효과를 가졌다.

Keywords

References

  1. Mueller, A. C. and Chiou, J. P., 1988, "Review of Various Types of Flow Maldistribution in Heat Exchangers," Heat Transfer Engineering, Vol. 9, No. 2, pp. 36-50.
  2. Soltan, B. K., Saffar-Avval, M., and Damangir, E. 2004, "Minimizing Capital and Operating Costs of Shell and Tube Condensers Using Optimum Baffle Spacing," Applied Thermal Engineering, Vol. 24, pp. 2801-2810. https://doi.org/10.1016/j.applthermaleng.2004.04.005
  3. Roetzel, W., Na Ranong, R, C. and Fieg, G., 2011, "New Axial Dispersion Model for Heat Exchanger Design," Heat and Mass Transfer, Vol. 47, No. 8, pp. 1009-1017. https://doi.org/10.1007/s00231-011-0847-z
  4. Wang, J., 2008, "Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: U-type Arrangement," Int. J. of Hydrogen Energy, Vol. 33, No. 21, pp. 6339-6350. https://doi.org/10.1016/j.ijhydene.2008.08.020
  5. Vist, S. and Pettersen, J., 2004, "Two-Phase Flow Distribution in Compact Heat Exchanger Manifolds," Exp. Thermal and Fluid Science, Vol. 28, pp. 209-215. https://doi.org/10.1016/S0894-1777(03)00041-4
  6. Lalot, S., Florent, P., Lang, S. K. and Bergles, A. E., 1999, "Flow Maldistribution in Heat Exchangers," Applied Thermal Engineering, Vol. 19, pp. 847-863. https://doi.org/10.1016/S1359-4311(98)00090-8
  7. Pacio, J. C. and Dorao, C. A., 2010, "A Study of the Effect of Flow Maldistribution on Heat Transfer Performance in Evaporators," Nuclear Engineering and Design, Vol. 240, pp. 3868-3877. https://doi.org/10.1016/j.nucengdes.2010.09.004
  8. Lee, J. K. and Oh, H. C., 2008, "Introduction of LNG Regasification Vessel," Daewoo Eng. Tech report, Vol. 24, No. 1, pp. 80-89.
  9. Wen, J., Li, Y., Zhou, A. and Zhang, K., 2006, "An Experimental and Numerical Investigation of Flow Patterns in the Entrance of Plate-Fin Heat Exchanger," Int. J. of Heat and Mass Transfer, Vol. 49, pp. 1667-1678. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.029
  10. Wen, J. and Li, Y., 2004, "Study of Flow Distribution and Its Improvement on The Header of Plate-Fin Heat Exchanger," Cryogenics, Vol. 44, pp. 823-841. https://doi.org/10.1016/j.cryogenics.2004.04.009
  11. Gaddis, E. S. and Gnielinski, V., 1997, "Pressure Drop on The Shell Side of Shell-and-Tube Heat Exchangers with Segmental Baffle," Chem. Eng. and Proc., Vol. 36, pp. 149-159. https://doi.org/10.1016/S0255-2701(96)04194-3
  12. Li, H. and Kottke, V., 1999, "Analysis of Local Shellside Heat and Mass Transfer in the Shell-and-Tube Heat Exchanger with Disc-and Doughnut Baffles," Int. J. of Heat and Mass Transfer, Vol. 42, pp. 3509-3521. https://doi.org/10.1016/S0017-9310(98)00368-8
  13. Lee, S. J. and Kim, H. B., 1999, "Laboratory Measurements of Velocity and Turbulence field behind the porous fences," J. of Wind Eng. and Ind. Aerodyn., Vol. 80, pp. 311-326. https://doi.org/10.1016/S0167-6105(98)00193-7
  14. Ranganayakulu, Ch. and Seetharamu, K. N., 2000, "The Combined Effects of Wall Longitudinal Heat Conduction and Inlet Fluid Flow Maldistribution in Crossflow Plate-Fin Heat Exchangers," Heat and Mass Transfer, Vol. 36, pp. 247-255. https://doi.org/10.1007/s002310050392
  15. Lee, E., Kang, H., Heo, J., Kim, Y., Park, J. and Cho, S., 2011, "Numerical Study on the Distribution Characteristics of Aluminum Plate-Fin Heat Exchangers According to the Distributor Aspect Ratio," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 8, pp. 805-814. https://doi.org/10.3795/KSME-B.2011.35.8.805