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Abstract

In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched
and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the
walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function
(MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the
3" power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the
tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger
deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the
longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the
nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown
to be in quantitative agreement with transient and steady-state elongational viscosity data of two mon-
odisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-vis-
coelastic characterization of the melts. The same approach is extended to model experimental data of four
styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for
the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension
and shear rheology on the basis of linear-viscoelastic data alone.

Keywords : constitutive equation, monodisperse polymer, Doi-Edwards model, MSF model, tube diameter
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1. Introduction

In elongational flow, the Doi-Edwards (DE) model with
the so-called independent alignment assumption predicts
an upper limit of the tensile stress equal to 5 times the pla-
teau modulus, Gy. This limiting stress results from the
assumption of instantaneous chain retraction and therefore
the absence of any chain stretching, In the DE model, the
macroscopic stress is a consequence of chain orientation
only, resulting in a scaling of the steady-state elongational
viscosity at strain rates & larger than the inverse reptation
time according to &' . Relaxing the assumption of instan-
taneous chain retraction, various reptation-based models
have invoked chain stretch when the deformation rate is
larger than the inverse Rouse time 7; of the chain, but
quantitative agreement with experimental data was not
achieved.

In contrast to the DE scaling, elongational viscosity mea-
surements of Bach et al. (2003) on narrow molar mass dis-
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tribution polystyrene melts have revealed that the elon-
gational viscosity scales approximately with &' . Mar-
rucci and lanniruberto (2004) have introduced an inter-
chain pressure term arising from lateral forces between the
chain and the tube wall into the DE model to account for
this effect, leading to a specific tube diameter relaxation
time, which limits chain stretching. However, their analysis
was restricted to scalar arguments and to the steady-state
viscosity. A full constitutive equation, which describes
time-dependent as well as steady-state rheology of nearly
monodisperse polymer melts was presented by Wagner ez
al. (2005), and predictions are in excellent agreement with
the elongational viscosity data of Bach er al. (2003), Has-
sager (2004), and Nielsen ef al. (20006).

The tube diameter relaxation time as introduced by Mar-
rucci and lanniruberto (2004) has been expected to be pro-
portional to the Rouse relaxation time. However, the exact
value of the proportionality constant remained elusive, and
so far, the tube diameter relaxation time has been used as
a f{it parameter. By considering the limit of small chain
stretch, we show that in the melt, the tube diameter relax-
ation time is equal to 3 times the Rouse stretch relaxation
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time of the chain, and we propose a combination of Rouse
relaxation and tube diameter relaxation in agreement with
experimental evidence at larger deformations. We also
extend this approach to an analysis of shear viscosity data
of four styrene-butadiene random copolymer melts (Bou-
kany et al., 2009).

2. Experimental Data

The elongational data discussed are those reported by
Bach et al. (2003) and Hassager (2004) on nearly mon-
odisperse polystyrene (PS) melts. Polymer characterization
and spectra of 2 nearly monodisperse polystyrene melts are
summarized in Table 1. The Rouse time 7; and the longest
relaxation time 7, (identified with the reptation time here)
were calculated according to well-known relations (Osaki
et al., 1982; Menezes and Graessley, 1982; Takahashi et
al., 1993; Isaki er al., 2003),

o 22 0
* 7r2p RT\M
and

Tw:‘]eo 770 (2)

M, of polystyrene was taken as 35,000 g/mol.

The experimental shear data analyzed are those reported
by Boukany er al. (2009) on four styrene-butadiene ran-
dom copolymer (SBR) melts, denoted as SBRI100K,
SBR170K, SBR250K and SBR500K with molar masses
from 94.8 kg/mol to 497 kg/mol. The linear-viscoelastic
parameters and the molecular characterization of the sam-
ples are summarized in Table 2. The Rouse times of the

Table 1. Molecular characterization [(Nielsen et al. 2006) and
discrete relaxation spectra (relaxation moduli g and
relaxation times A;) of PS samples at 130°C]. z, is the
tube diameter relaxation time as determined by Wagner
et al. (2005)

PS200K PS390K
M,, = 200,000 g/mol M,, = 390,000 g/mol
M,/M,=1.04 M,/M,=1.06

J'=1.16x10"° [Pa™']
n0=8.26><107 [Pa.s]

J'=1.50x10" [Pa]
=1.57x10° [Pas]

=91.5s =329 s
T4=961s t,~11351s
7,=384s 1,=1462 s
g [Pa] A [s] g [Pa] A [s]
2.38x10° 475107 4.63x10° 1.04x10™
3.71x10* 5.29x10° 7.79x10* 1.07x10°
2.71x10* 1.96x10" 3.00x10* 9.70x10°
5.46x10" 9.20x10' 2.55x10* 5.16x10"
4.96x10°* 4.43x10° 3.33x10* 2.35x107
433x10* 1.26x10° 431x10°* 1.14x10°
5.15x10°* 5.97x10°
2.28x10* 1.71x10*

melts are those published by the authors.
3. The Doi-Edwards Model

When introducing the tube model, Doi and Edwards

Table 2. Molecular characterization (Boukany et al. 2009) and relaxation spectra (relaxation moduli g; and relaxation times 4;) at 23°C

of SBR copolymers

SBR(100K) SBR(170K) SBR(250K) SBR(500K)
M,, =94.8 kg/mol M,, = 174 kg/mol M,, =250 kg/mol M,, =497 kg/mol
M,/M, = 1.05 M/M, = 1.07 M,/M, = 1.04 M/M,=1.19

J'=3782x10"° Pa™
17, =1.778%10° Pa-s

J'=4.625%107° Pa”!
7, =6.05x10" Pa‘s

J'=3.387x10"° Pa’'
7, =9.036x10° Pas

J'=3.892x107° Pa™
1, =1.252x10° Pas

z=1.1s »=23s w=4.1s z=13s
7=24 7=53 7=76 Z=160
g [Pa] A [s] g [Pa] A 8] g [Pa] i [s] g [Pa] L 8]

2.222x10° 5.767x107 6.464x10° 1.393x10™ 1.008x10° 7.750%x107 3.795x10* 5.680x107
7.308x10* 6.275x1072 2.959x10" 6.216x10° 5.244x10" 8.242x107 1.014x10° 6.258x107
9.648x10* 3.980x10™ 6.577x10" 3.834x1072 7.108x10* 5.584x10™ 4.810x10° 3.194x10™
1.276x10° 2369x10° 6.850x10* 2395x10™ 1.012x10° 3.595x10° 6.305x10* 1.728x10°
1.681x10° 1.497x10' 8.955%10* 1.297x10° 1.476x10° 2.413x10" 7.846x10* 8.209x10°
1.269x10° 3.873x10' 1.138x10° 6.454x10° 2.475x10° 2.133%10° 1.019x10° 3.766x10'
1.504x10° 3.295x10" 9.435x10" 7.258x10° 1.444x10° 1.881x10?

2.469x10° 1.470x10? 2.031x10° 1.051x10°

1.709x1¢° 3.852x10°
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assumed that the diameter a, of the tube is not changed
even by large non-linear deformations, or equivalently that
the tension in the deformed macromolecular chain remains
constant and equal to its equilibrium value (Doi and
Edwards, 1986). The extra stress tensor o (¢) is then a con-
sequence of the orientation of tube segments due to the
flow. The resulting constitutive equation is of the single
integral form,

o(t)= [j m(t—1")Spx(t, tdt' 3)
if the tube segments are assumed to align independently of
each other in the flow field (the “Independent Alignment
(IA)” approximation). m(z—t') is the memory function with
m(t—t"y=2 (g/A)e """ | and the relative strain measure
Siy. is given by

Spe(t, t')ss<%> =58(1,1") 4
u” [

§ is the relative second order orientation tensor. The
bracket denotes an average over an isotropic distribution of
unit vectors u(#’) at time ¢’, and can be expressed as a sur-
face integral over the unit sphere,

_1
“TAxg

(.0 [...1sin 6,d6,do, (5)
At the observation time ¢, the unit vectors are deformed to
vectors u', which are calculated from the affine deforma-
tion hypothesis (with F'(z, ') as the relative deformation
gradient tensor) as

101 T

T

! m PS390K T=130°C
i o PS390K (T=150°C)

10°

TNus [Pas]

10t

107 L T R B NETTY IR I
107 10 107 102 10 10°

Fig. 1. Comparison of steady-state elongational viscosity data of
PS390K measured at 130°C (full symbols), and at 150°C
(shifted to 130°C, open symbols), to predictions by DE
theory (dash-dotted line), Eq. (3), Rouse stretch (dotted
line), Eq. (10), and MSF model (full line) according to
evolution equation (17).
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u(t, t)=F'(t, t'yu(t) ©)

u' indicates the length of the vector u'".

As the stress is assumed to be due to orientation of tube
segments only, the DE model does not account for any
strain hardening. This is demonstrated in Fig. 1, where pre-
dictions of the DE model are compared to the steady-state
clongational data of PS390K. As expected, prediction and
data deviate increasingly with increasing strain rate, as the
DE prediction scales with &', while the data scale approx-
imately with &

4. Modeling Chain Stretch

Doi and Edwards (Doi and Edwards, 1986) added a
stretch process with a stretch A of the tube segments to
their model in order to explain the discrepancies of the DE
theory at start-up of shear and extensional flows. Pre-aver-
aging the stretch, ie. assuming that the stretch is uniform
along the chain contour length and an explicit function A(¥)
of the observation time, which operates on the orientational
configuration resulting from the integration over the ori-
entation history, the extra stress tensor is given by

o(t)= 22(0) [ m(t—1)SEr, t)dr’ %
Eq. (7) generated the necessity to find a stretch evolution
equation, and a vast variety of concepts based on different
kinetic ideas have been proposed in recent years (see e.g.
Doi, 1980; McLeish and Larson, 1998; Mead et al., 1998).

While in models with pre-averaged stretch the tube
diameter is invariably assumed to stay constant and equal
to its equilibrium value a,, stretch can also be introduced
by the assumption of a strain-dependent tube diameter, as
first suggested by Marrucci and de Cindio (1980). In this
way, also the pre-averaging of the stretch can be avoided,
which is inherently present in models based on Eq. (7) or
its differential approximations. It should also be noted that
Eq. (7) with any function A’(f) is not in agreement with
experimental results of reversed elongational flow of a
monodisperse polystyrene melt (Nielsen and Rasmussen,
2008).

5. The Molecular Stress Function Model

A generalized tube model with strain-dependent tube
diameter was presented by Wagner and Schaeffer (Wagner
and Schaeffer, 1992; 1993; 1994). In the Molecular Stress
Function (MSF) model, tube segment stretch fis directly
related to the tube diameter @, which decreases from its
equilibrium value a, with increasing stretch. Taking into
account that the tube diameter a represents the mean field
of the surrounding chains, it is assumed that the tube diam-
eter is independent of the orientation of tube segments. The
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extra stress is then given as
- N 2QIA L g
o(t)= [ m(r—t")f Spe(t, t')dt (8)

The molecular stress function /= f(z, ') is the inverse of
the relative tube diameter,

St 1) =a/a(t, 1) ©

In contrast to Eq. (7), stretch in Eq. (8) does not only
depend on the observation time 7, but depends on the strain
history, i.e. for time-dependent strain histories, chain seg-
ments with long relaxation times (i.e. at the center of the
chain) see higher stretches than chain segments with short
relaxation times (i.e. at the chain ends).

Following conventional arguments (Pearson ef al., 1989)
and assuming that the affine deformation of the chain is
balanced by a linear spring force, the evolution equation
for ftakes the form

¥ e syLs
5~ Sy (1) (10)

with velocity gradient x and a Rouse stretch relaxation
time 7 of the chain. For PS390K, a value of 7z =329s is
obtained from Eq. (1). As demonstrated in Fig. 1, this does
clearly not describe the steady-state elongational viscosity
of PS390K. It is obvious from Fig. 1 that a linear spring
force will quench chain stretch as long as the Weissenberg
number Wi=£r, is much smaller than 1, while chain
stretch will diverge in the limit of Wi — 1, resulting in a
diverging steady-state elongational viscosity. This is clearly
seen by setting the left hand side of Eq. (10) to zero, which
gives the maximum stretch £, as

1

6. The Interchain Pressure Term and the Evolution
Equation of Chain Stretch

Considering a chain composed of N Kuhn segments of
length b, confined within a box of dimensions L., L,and L,
where the overall length of the chain is much larger than
the dimensions of the confining box, Doi and Edwards
(1986) demonstrated that the pressure exerted by the chain
on the walls of the box is anisotropic, if the chain is con-
fined to an anisotropic box. The pressure acting on a box
wall normal to the x-axis is given by the gradient of free
energy A4 in the x-direction (Doi and Edwards, 1986),

_ 1 24 _7ZNb kT

e (12)

i.e. the pressure is increasing with increasing confinement
of the chain. Taking z as the direction of the tube axis, and
x and y as the directions perpendicular to the tube axis, and

206

setting L,~L,~a and V=a’Ly,,, this leads to (Marrucci
and lanniruberto (2004))

2

px=pysz - (13)

al Tube
As Nb is a constant, and considering that the tube surface
area being proportional to alg,, is constant even at large
deformations (Wagner and Schaeffer, 1992), the relative
radial pressure p/p, will increase inverse proportionally to
the 3rd power of the tube diameter a from its equilibrium
value py,

3
22 (14)
Po a
Therefore, when the tube diameter is decreased with
increasing deformation, the radial pressure of the chain
exerted on the surrounding topological constraints is
increasing. Marrucci and lanniruberto (2004) assumed that
this radial pressure increase is balancing tube diameter
reduction and thereby chain stretch. Considering elonga-
tional flow with strain rate &, they derived a scalar evo-
lution equation for the tube diameter a,

3
‘Z—‘Z —ia+ ‘?(;i;_lj (15)

We called 7, the tube diameter relaxation time (Wagner
et al., 2005), and replaced the first term on the right hand
side of equation (15) by the general tensorial description
for the deformation rate in analogy to equation (10) above
(see e.g. Wagner et al. (2001)), which leads to

3
da_ .. o Gy _
5 (x:8)a+ Ta[a3 1] (16)

Inserting the definition of the molecular stress function,
f=aya, we obtained from Eq. (16) the following evolution
equation for the tension in a chain segment,

2 3
g{:f(K:S)—MZ_ = 17)

with the initial condition f(z=1¢',¢")=1. When the linear-
viscoelastic response is known, Eq. (17) together with Eq.
(8) represent a full constitutive relation with only one
material parameter, the tube diameter relaxation time 7z,

Due the nonlinear restoring pressure term on the right
hand side of Eq. (17), the divergence of the maximum
stretch f;,, in constant strain-rate elongational flow is now
removed, and for fast deformations, the steady-state elon-
gational viscosity scales with

1

M = A TaE° (18)

in good agreement with the experimental results of Bach et
al. (2003) and the analysis of Marrucci and Ianniruberto
(2004). The tube diameter relaxation time is expected to be
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proportional to the Rouse relaxation time. However, the
exact value of the proportionality constant remained elu-
sive, and 7, was so far considered as a fit parameter. As
shown in Fig. 1, the steady-state elongational viscosity as
predicted from Eqs. (8) and (17) for PS390K is in excellent
agreement with the data, when the value of the tube diam-
eter relaxation time is fitted to 7,= 1462 s.

7. Relation of Tube Diameter Relaxation and Rouse
Time

Rewriting Eq. (17) in the form

g;ﬂmsyﬁ;{ﬁﬂf4yﬂwf4f+ﬂf4f+u;Uﬁ
) (19)

it is obvious that in first order in the stretch, i.e. for f~1<<1,
Eq. (17) reduces to the classical relation (10) with

/TN |
o TS5 (20)

i.e. in the limit of small stretch, the tube diameter relax-
ation time 7, of the melt can be identified with

7,= 31 1)

This is an important result. However, in view of the fact
that in the case of small chain stretch, tube segment length
and tube diameter are nearly equal, and therefore the effect
of the chain pressure on the tube wall corresponds to the
tension along the chain, this result is not as surprising as it
may seem at first.

In the development of evolution equations for chain
stretch until now, two different approaches have been fol-
lowed: In the classical relation (10), chain stretch is
assumed to be balanced by the spring force of the chain in
the longitudinal (stretched) direction of the tube, leading to
a stretch relaxation term with Rouse time zz. On the other
hand, Marrucci and Ianniruberto (2004) assume that the
interchain pressure resulting from tube diameter reduction
and acting in the two dimensions perpendicular to the tube,
is responsible for balancing further tube diameter reduction
and thereby chain stretch as described by Egs. (16) and
(17). Thus, while in the classical relation (10), force bal-
ance is restricted to the longitudinal direction of the tube,
the interchain tube pressure approach of Eq. (15) considers
only force balance in the lateral direction of the tube. The
original findings of Doi and Edwards (1986), however,
maintain that the chain pressures on the walls of a con-
fining box are anisotropic if the dimensions of the box are
anisotropic, ie. there will be different restoring forces in
the longitudinal direction (no wall) and in the lateral direc-
tion of the tube, where the chain is confined by topological
constraints of the other chains. We therefore argue that
chain stretch is balanced simultaneously and additively by
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two restoring tensions with weights of 1/3 in the longi-
tudinal direction and 2/3 in the lateral direction, leading to
an evolution equation for the stretch of the form

o ooy L1 2001
ot J(x:S) 31, 3 7, (22)

or, by use of Eq. (21)
L=ries- L3t | 3)

Eq. (23) is equivalent to the classical relation (10) in first
order in the stretch. It removes the singularity present in
the classical relation (10) for Wi= éz; — 1. It does not
contain any nonlinear material parameter, as the Rouse
time 7z of the chain is determined by the molecular char-
acteristics of the polymer as obtained from linear vis-
coelasticity, and thus we have made significant progress in
developing a nonlinear integrodifferential constitutive rela-
tion, Eqgs. (8) and (23), with no free parameters.

As the interchain pressure term of Marrucci and Tan-
niruberto (2004) enters in Eq. (22) with the weight of 2/3,
the effective tube diameter relaxation time 7 of the melt
at large stretches is

Ty = 2% (24)

This can be seen from Eq. (23) by considering that at large
/- the stretch is determined mainly by the interchain pres-
sure term. The factor 9/2 is in good agreement with the
findings of Wagner et al. (2005) for PS melts with molar
masses of 200 kg/mol and 390 kg/mol, for which, as seen
from Table 1, a factor of 4.2 and 4.4, respectively, between
7, and 7; was found.

8. Comparison of MSF Modeling with Experimen-
tal Data

8.1. Elongational Flow

To demonstrate the validity of the stretch evolution equa-
tion based simultaneously on interchain pressure and Rouse
relaxation, we reanalyze the data of Bach et al. (2003).
Figs. 2(a) and 2(b) present comparisons of the transient
clongational viscosity data for PS 390K and PS 200K to
predictions of Eqs. (8) and (23). The time-dependent
increase as well as the plateau value of the elongational
viscosities is seen to be in excellent agreement for both
polystyrene samples with the predictions of the stretch evo-
lution equation (23). It should be noted that this agreement
is achieved by use of a single material parameter, the
Rouse stretch relaxation time 7z, which is determined by
the molecular characteristics of the polymer and is
obtained from linear viscoelasticity.

In Fig. 3, the steady-state elongational viscosities of
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Fig. 2. Comparison of measured transient elongational viscosity
data (symbols) to predictions (full lines) by MSF model
with stretch evolution equation (23) and Rouse times z; as
given in Table 1. Dotted line indicates 77,(7).

PS390K and PS200K as predicted by Egs. (8) and (23) are
presented and compared to the experimental data, and
excellent agreement is observed.

8.2. Shear Flow

Comparison of shear viscosity data obtained for a series
of SBR copolymer melts (Boukany ef al. 2009) and pre-
dictions of the MSF model are presented in Figs. 4(a)-(d)
for SBR100K, SBR170K, SBR250K and SBR500K,
respectively. As expected, the shear viscosity data confirm
a negative deviation from the linear-viscoelastic start-up
prediction, which is the stronger the higher the shear rate
applied, i.e. the melts show strong shear thinning, A max-
imum in the shear viscosity data is also revealed, before the
shear thinning itself occurs. These features are described
remarkably well by the MSF model, and general agreement
between experimental data and predictions of the MSF

208

1091

Tus [Pas]

10%
e PS200K T=130°C
= PS390K T=130°C
o PS390K T=150°C

| visnd s TNETH B R

107 3 ! 3 Y02 i oo
107 10 107 107 107 10

£[s1]

Fig. 3. Comparison of measured steady-state elongational visco-
sity data of PS390K and PS200K (symbols) to predictions
(lines) of MSF model with stretch evolution equation (23)
and Rouse relaxation times 7z as given in Table 1.

model is observed for all four SBR samples considered and
for a wide range of shear rates. The disagreements between
data and model at low values of the shear rate in the case
of SBR170K, SBR250K and SBR500K may have their
origin in inaccuracies of the experimentally determined lin-
ear-viscoelastic spectra with the terminal relaxation times
of these melts not being fully resolved. There are no exper-
imental data at times much beyond the time of the max-
imum shear viscosity, and therefore there are no data for
comparison with predicted steady-state shear viscosities.
Particle-tracking velocimetry (PVT) in start-up shear flows
has revealed that the shear field becomes inhomogeneous
in space at times after the shear stress overshoot due to
shear banding, a stratification that remains even in the
regime where the shear viscosity is expected to show a sta-
tionary value (Tapadia and Wang, 2006).

Fig. 5 presents the square of stretch, /7, as a function of
shear deformation y as predicted by the MSF model, and it
is seen that the stretch of the molecular chains increases
with the intensity of the flow, ie. with the Weissenberg
number Wi= y 7 based on the Rouse time. It is also
observed that the maximum in the stretch is not only
increasing with increasing shear rate, but is also shifted to
higher shear deformations with increasing Weissenberg
number, which, in turn leads to a shift of the maximum of
the shear viscosity to higher shear deformations with
increasing shear rates. '

The maximum of the shear viscosity, .., is plotted as a
function of the Weissenberg number in Fig. 6 for the SBR
melts indicated by their average number of entanglements
per chain, Z= M, /M, The values of Z given are those
reported by Boukany er al. (2009). A constant value of

Korea-Australia Rheology Journal
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Fig. 4. Comparison of measured transient shear viscosity data (symbols) of SBR 100K, 170K, 250K and 500K at T=23°C to predictions
(full lines) by MSF model with stretch evolution equation (23). Dotted line indicates 7(2).
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Fig. 5. Comparison of the square of relative chain stretch, /2, as
a function of deformation for different Weissenberg
numbers Wi= y 1z, based on the Rouse time.
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Yuax = 2.1, irrespective of shear rate, is predicted by the DE
model (Doi and Edwards 1979). When molecular chains
are increasingly stretched with increasing shear rates, i.e.
for Wi>1, %, increases according to a power-law. This
behaviour is independent of the number of entanglements
and scales with the Rouse time. If the classical Rouse
stretch model, Eq. (10), is considered, the experimental
data are clearly overpredicted, while the MSF model, within
experimental error, describes the data correctly up to Weis-
senberg numbers of Wi~30 . This comparison clearly reflects
the importance of taking the stretch of polymer chains cor-
rectly into account.

9, Conclusions

The pressures exerted by a polymer chain on the walls of
an anisotropic confinement are anisotropic (Doi and Edwards,
1986). Implementation of these findings into a tube model
with variable tube diameter leads to an interchain pressure
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Fig. 6. Comparison of measured shear deformation at maximum
shear stress (symbols) as a function of Weissenberg num-
ber to predictions by MSF model with stretch evolution
equation (23) (short-dashed lines), DE model (continuous
line), Eq. (3), and Rouse stretch (long-dashed line), Eq.
(10), for SBR samples.

term in the lateral direction of the tube, which is inverse
proportional to the 3™ power of the tube diameter a
(Marrucci and Ianniruberto, 2004). When the tube diameter
is decreased with increasing deformation, the chain is
stretched, and the radial pressure of the chain exerted on
the surrounding topological constraints is increased and
resists further tube diameter reduction. This concept leads
to an evolution equation for the chain stretch with an inter-
chain pressure term that is characterized by a tube diameter
relaxation time 7, (Wagner ef al., 2005).

The tube diameter relaxation time z, of the melt was
shown to be equal to 3 times the Rouse time z; of the chain
by considering small chain stretch, when tube segment
length and tube diameter are still nearly equal, and the
effect of the interchain pressure term in lateral direction is
equal to the relative tension of the chain in the longitudinal
direction of the tube.

At larger deformations, the equality between the inter-
chain pressure in the lateral direction (being inverse pro-
portional to the 3" power of the tube diameter a) and the
tension in the longitudinal direction (increasing linearly
with stretch) does no longer hold. Chain stretch is then bal-
anced by two restoring tensions with weights of 1/3 in the
longitudinal direction and 2/3 in the lateral direction, both
of which are characterized by the Rouse relaxation time.
This approach is in quantitative agreement with the elon-
gational behavior of two monodisperse polystyrene melts
with molar masses of M, =200,000g/mol and 390,000g/

210

mol as determined by Bach er ol (2003) and Hassager
(2004), as well as the shear flow data of four nearly mon-
odisperse SBR copolymer melts (Boukany et al., 2009). In
the case of shear, agreement is excellent up to and some-
what beyond the maximum in the shear viscosity, when
shear banding begins to corrupt experimental data. The
MSF model is also in good agreement with the shear defor-
mation ., at the maximum value of the shear viscosity
observed up to Weissenberg numbers of Wi~30, although
the slope of the power-law increase in %, With increasing
Weissenberg number observed is somewhat higher than
predicted. This may be due to experimental issues at high
shear rates, or to the effect of glassy modes not taken into
account by the model.

In conclusion, the analysis of experimental data in elon-
gational and shear flow of monodisperse linear polystyrene
and SBR melts clearly demonstrates that the tube, i.e. the
confinement of a test chain, is characterized by the ori-
entation in the direction along the tube, and the diameter of
the tube in the lateral dimension. Chain stretch is asso-
ciated with a reduction of the tube diameter, which is bal-
anced by a linear spring force in the longitudinal direction
and a nonlinear interchain pressure in the lateral direction,
both of which are governed by the Rouse time of the chain,
Thus for the first time a constitutive equation is available
which allows quantitative modeling of nonlinear extension
and shear theology of monodisperse linear polymer melts
exclusively based on linear-viscoelastic characterization.
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