• Title/Summary/Keyword: TTX(Tilting Train eXpress)

Search Result 58, Processing Time 0.033 seconds

Introduction of Development Status of the Korean Tilting Train eXpress (한국형 틸팅열차 개발 현황 소개)

  • Seo, Sung-Il;Han, Seong-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.229-233
    • /
    • 2005
  • This paper explains development status of the Korean tilting train. The Korean Tilting Train eXpress (TTX) project has been carried out to develop all the core technologies related to tilting train and infra-technology to provide high speed inter-city service with the speed of 180 km/h as well as maintenance-free technology for conventional railway system. The TTX project is under 5th stage. In this stage, manufacturing and combination test for the main components are being conducted. By the end of next year, assembly of TTX will be completed.

  • PDF

Crash Simulation on the Front End Structure of Korean Tilting Train eXpress(TTX) (한국형 고속틸팅열차의 전두부 충돌특성 시뮬레이션)

  • Kim S.R.;Kwon T.S.;Jung H.S.;You W.H.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.322-325
    • /
    • 2005
  • TTX(Tilting Train eXpress) is being designed for improving the speed of conventional railway. The purpose of this study is to evaluate energy absorbing capacity and driver's survivability for a design candidate of the front end structure of TTX. A FE model with honeycomb block, under frame, and body frame is generated for crash simulation. Based on a level-crossing accident scenario, numerical simulation is performed using LS-DYNA. The results of crash analysis show that strength improvement of the current front end structure design candidate is needed to ensure driver safety.

  • PDF

Analysis of the Composite Structure of Tilting Train eXpress (TTX) (한국형 고속틸팅열차(TTX)의 복합재 차체 및 접합부의 구조 해석)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Shin Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.657-662
    • /
    • 2004
  • The weight reduction of carbody structures is of great concern in developing high speed tilting train for the normal operation of tilting system. The use of composite materials for the carbody structures has many advantages due to their excellent material properties such as high specific strength and stiffness. In this paper, finite clement analysis was conducted to analysis and design the composite structure of Tilting Train eXpress(TTX). According to JIS E 7105, various load tests were performed using finite element analysis and the structural safety of the composite carbody structure was inspected to determine the thickness of the composite sandwich structure. In addition, structural analysis was conducted to suggest a design of the joint part of composite carbody and metal underframe.

  • PDF

Product Data Management for The system Engineering of Train Tilting express (고속 틸팅 차량설계를 위한 전산통합 환경 구축 연구)

  • Han, Seong-Ho;Song, Yong-Su
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.65-69
    • /
    • 2004
  • Abstract Tilting train has been developed to increase the oprational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data management) to make a system engineering of TTX(Tilting Train eXpress) with maximum operation speed 180 km/h.

  • PDF

A study on Structural Analysis of Korean Tilting Train eXpress(TTX) made of Composite Carbody Structures (복합재료를 적용한 한국형 고속틸팅열차(TTX)의 차체 구조해석 연구)

  • Shin Kwang-Bok;Koo Dong-Hoe;Park Kee-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.98-102
    • /
    • 2003
  • The use of composite materials for the carbody structures of tilting train has many advantages because of manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage is the possibility of lightweight product. In the leading countries, the composite materials are used for the material for drivers' cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the all aluminum carbody, all composite carbody and hybrid carbody structures of the Korean Tilting Train eXpress(TTX) with the service speed of 180km/h.

  • PDF

A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) (한국형 고속 틸팅열차(TTX)의 차체 재질 선정 연구)

  • Shin, Kwang-Bok;Koo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.462-467
    • /
    • 2004
  • In order to determine the most suitable material system which can achieve the lightweight design and fulfill the design requirements of carbody structures of Korean Tilting Train eXpress (TTX), aluminum carbody, composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in present study. The finite-element analysis was used to verity the design requirements of the TTX carbody structures with the material system being considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were checked as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity when compared to aluminum and composite carbody structures.

  • PDF

Life Cycle Assessment of Korean Tilting Train eXpress for Environmental Declaration of Product(EDP) (환경성적표지 인증을 위한 한국형 틸팅열차의 전과정평가)

  • Lee, Hyun-Bae;Kim, Yong-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2262-2269
    • /
    • 2010
  • A recent Tilting train development operation for existing line high speed, already developed "Korean Tilting Train eXpress(bellow TTX)" and that doing demonstration of operation. And TTX are going to commercial service in 2012. They are preparing Environmental Declaration of Product(bellow EDP) for offering environmental impact of TTX to customer. EDP calculated environmental impact of target product's whole life cycle(raw material and manufacturing, distribution, use, end of life) more quantity for that improving environmental impact and then certification them, it is using for that estimate some part of existence of specific pollutants, GHGs, energy consumption and recycling ratio. In this study, 1) analyze the process of getting EDP, 2) satisfy common criteria and each criteria(plan) in the Product Category Rules(bellow PCRs) provided KEITI, 3) according to ISO 14044, implementation of LCA. 4) These results be shown Characterized Impact(bellow CI) about each life cycle stage and six impact categories(ARD, GWP, OD, AD, EU, POC).

  • PDF

Virtual System for Manufacture of Train Tilting eXpress using Project Data Management (틸팅 차량 설계를 위한 Virtual System 구축 연구)

  • Song, Yongsoo;Han, Seong-ho;Seo, Sung-Il
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. The train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data management) to make a system engineering of TTX(Tilting Train eXpress) with maximum operation speed of 180 km/h.

  • PDF

Implementation of Tilting Management System of TTX (틸팅 차량의 열차 관리 시스템의 구현)

  • Kim Hyung-Chul;Choi Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.157-162
    • /
    • 2005
  • This paper describes the system implementation of TMS(Train Management System) to be applied to a TTX(Korea Tilting eXpress). For better safety and reliability of vehicle, increased quantity and fast transmission of data between TC(Train Computer) and CC(Car Computer) and control equipment of train is required. To satisfy these requirements, this system uses RTOS(Real Time OS) so that do realtime data management, And it is implemented to minimize the noise inflow and a signal level reduction of the communication line. Also it is designed to suitable interface of a TTX vehicle and is verified by laboratory test.

  • PDF

The Manufacturing Process for Hybrid Composite Carbody Structures of Korean Tilting Train eXpress (TTX 하이브리드 복합재 차체 제작 공정)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.212-215
    • /
    • 2004
  • The hybrid composite carbody structures were considered as the carbody system of Korean Tilting Train eXpress(TTX) to achieve the lightweight design. The TTX carbodies are composed of the carbody shell made of the sandwich composite structure and the undeframe made of the metal structure. The sandwich structures were used to minimize the weight of carbody, and the metal underframe was used to modify the design easily and to keep the strength of underframe by the installation of the electrical equipments. The sandwich carbody structures will be cured in an autoclave. In this paper, the manufacturing processes of the TTX carbody structures were introduced briefly.

  • PDF