• Title/Summary/Keyword: TPLMS

Search Result 20, Processing Time 0.026 seconds

Research Priorities to Support Mandatory Implementation of a Total Pollutant Load Management System (TPLMS) in the Han River Basin (한강수계 의무적 수질오염총량관리제시행지원을 위한 조사·연구의 우선순위 설정)

  • Lee, Chang-Hee;Lee, Bum-Yeon;Lee, Su-Woong
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.25-36
    • /
    • 2009
  • The Total Pollutant Load Management System(TPLMS) in the Han River basin is being changed from a voluntary to a mandatory system. Accordingly, this study suggests directions and priorities for research that can support implementation of TPLMS through an objective approach that deploys gap analysis and analytic hierarchy processes (AHP). Gap analysis indicated that TPLMS in Korea is still focused on compliance with regulations, and that implementation of TPLMS is still in its early stage. Improvements are thus needed in flexibility and effectiveness, including introduction of emissions rights trading, and upgrading to a renewable emissions permit system. The AHP study indicated that R&D will need to proceed in parallel in multiple areas to improve systems and resolve scientific uncertainties. Balanced R&D will be needed in both the institutional and technical groups. Subgroup analysis indicated that developing a reasonable process to establish water quality management targets is of the highest priority in the institutional group. In the technical group, higher priority will need to be given to improving model reliability and developing innovative pollution load reduction technologies.

  • PDF

A Study on the Introduction of a Total Pollutant Load Management System in Gwangyang Bay, Korea (광양만 특별관리해역의 연안오염총량관리 도입에 관한 연구)

  • Kim, DoHee;Park, JongSick;Han, KiWon;Cho, HyeonSeo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.899-905
    • /
    • 2022
  • Seawater management via Total Pollutant Load Management System (TPLMS) is crucial because it enables local governments to optimally allocate pollutant loads in order to best reduce pollutant load burden while supporting reasonable development. This study analyzed the feasibility of introducing a TPLMS on Gwangyang Bay, a specially managed sea area. We researched the inflow of pollutants and analyzed the present state of seawater quality in Gwangyang Bay and then discussed our findings and reviewed other specially managed sea area with the Gwangyang Bay Advisory Committee. We conclude that TPLMS on Gwangyang Bay is needed and suggest checking economic feasibility, ef iciency, and conducting continuous monitoring of seawater quality indicators such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), heavy metals and polcyclic aromatic hydrocarbons (PAHs) prior to introducing a TPLMS in Gwangyang Bay.

Study on Estimation and Application of Discharge Coefficient about Nonpoint Source Pollutants using Watershed Model (유역모형을 이용한 유량조건별 배출계수 산정 및 활용방안 연구)

  • Hwang, Ha-Sun;Rhee, Han-Pil;Park, Jihyung;Kim, Yong-Seok;Lee, Sung-Jun;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • TPLMS (Total water pollutant load management system) that is the most powerful water-quality protection program have been implemented since 2004. In the implementation of TPLMS, target water-quality and permissible discharged load from each unit watershed can be decided by water-quality modeling. And NPS (Non-point sources) discharge coefficients associated with certain (standard) flow are used on estimation of input data for model. National Institute of Environmental Research (NIER) recommend NPS discharge coefficients as 0.15 (Q275) and 0.50 (Q185) in common for whole watershed in Korea. But, uniform coefficient is difficult to reflect various NPS characteristics of individual watershed. Monthly NPS discharge coefficients were predicted and estimated using surface flow and water-quality from HSPF watershed model in this study. Those coefficients were plotted in flow duration curve of study area (Palger stream and Geumho C watershed) with monthly average flow. Linear regression analysis was performed about NPS discharge coefficients of BOD, T-N and T-P associated with flow, and R2 of regression were distributed in 0.893~0.930 (Palger stream) and 0.939~0.959 (Geumho C). NPS Discharge coefficient through regression can be estimated flexibly according to flow, and be considered characteristics of watershed with watershed model.

A Study on the Application of Total Pollution Load Management System for Water Quality Improvement in Agriculture Reservoir (농업용 호소의 수질개선을 위한 오염총량관리제의 적용에 관한 연구)

  • Oh, Dae-Min;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.365-375
    • /
    • 2009
  • Agriculture reservoirs need a systematic approach that can control water purity and water improvement. The area under study, Bunam Lake exceeds the agricultural water standard level due to contamination from the upper stream. When the Taean Enterprise City was planned, the water quality improvement plan was applied to minimize the environmental change. However, in order to continuously maintain the water quality in the Bunam Lake, it was essential to apply the Total Pollution Load Management System (TPLMs). In order to achieve the targeted water quality in the Bunam Lake, standard flow rates and targeted water quality levels were applied to obtain the loading capacity which is as follows : BOD 1,891.2 kg/d, T-N 1,945.7 kg/d, T-P 131.7 kg/d. Also, the regional development load was calculated as, BOD 1,083.6 kg/d, T-N 942.2 kg/d, T-P 61.8 kg/d, which is required to be deceased :- by BOD 378.4 kg/d, T-N 198.9 kg/d, T-P 31.6 kg/d in order to safely achieve the targeted water quality in the Bunam Lake.

A Study on Verification of Delivery Ratio Methodology for Basic Plan at TPLMs(Total Pollutant Load Management System) (수질오염총량관리계획 수립을 위한 유달율 적용방안 검증 연구)

  • Lee, Sung Jun;Rhee, Han Pil;Park, Ji Hyung;Kim, Yong Seok;Hwang, Ha Sun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.714-722
    • /
    • 2017
  • The TPLMs is a system to manage the total amount of pollutants discharged from the watershed in order to achieve the target water quality of the river. In this process, the pollutant load can be classified into generation, discharge and delivery load. When using equation 2, the discharge coefficient should be 1. In case of using equation 3, it is considered that the discharge coefficient defined in the Technical Guideline should be applied. The delivery load is calculated as the product of the discharge load and the delivery ratio, and the delivery ratio is defined as the rate at which the pollutant discharged from the watershed reaches a specific point in the stream. In this study, the delivery ratio estimation method proposed by Hwang (2016) was applied to the Yonggang watershed in the Nakdong river. And the input data of QUALKO2 model was generated by using the estimated delivery ratio (equation 3) and the validation study was conducted by comparing with DRave (equation 2). As a result of the study, it is possible to use both the equation 2 and the equation 3, but it is necessary to change the methodology according to the application of the discharge coefficient.

Estimation of Pollutant EMCs and Loadings in Highway Runoff (국내 고속도로 강우 유출수의 EMCs 및 유출 부하량 산정)

  • Kim, Lee-Hyung;Ko, Seok-Oh;Lee, Byung-Sik;Kim, Sunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.225-231
    • /
    • 2006
  • The nonpoint source control is based on TPLMS (Total Pollution Load Management System) program. Recently, the Ministry of Environment in Korea has programed TPLMS for 4 major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. Usually the urbanization is the main pollutant sources, particularly for nonpoint pollutants, because of high imperviousness and high pollutant mass emissions. The stormwater runoff from urban areas is containing various pollutants such as sediments, metals and toxic chemicals due to human and vehicle activities. Of the various landuses, the highways are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to provide pollutant EMCs (Event Mean Concentrations) and mass loadings washed-off from highways during rainfall periods. Five monitoring locations were equipped with an automatic rainfall gage and an flow meter. The results show that the EMC ranges for 95% confidence intervals in highway land use are 45.52-125.76 mg/L for TSS, 52.04-95.48 mg/L for COD, 1.77-4.48 mg/L for TN, 0.29-0.54 mg/L for TP. The ranges of washed- off mass loading are $712.7-2,418.4mg/m^2$ for TSS and $684.1-1,779.6mg/m^2$ for COD.

NPS Control in Environment-kindly Resort Development: Determination of NPS Loading Rates by BMPs (친환경 리조트 개발사업을 위한 비점오염원관리: 비점저감시설을 통한 오염물질 삭감량 산정)

  • Lee, Eun-Ju;Jung, Yong-Jun;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.9-20
    • /
    • 2007
  • The nonpoint pollutants are originated from various land uses. Of the landuses, the development means the changes of the soil cover and the increases of imperviousness rate, which will increase the nonpoint pollutant emissions during a storm. Therefore, the Ministry of Environment in Korea has programed TPLMS(Total Pollution Load Management System) for four major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. The study area was forest landuse before resort development, however it is now changing to the resort. Some of the forest areas will be changed to parking lots, roads and buildings, which can be the major pollutant sources in the future. The paved areas are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to determine the changes of pollutant loading rate by development plan and to provide the best management practices for controlling nonpoint pollutants. Finally this research will provide the environment-kindly development technology for protecting the water quality.

  • PDF

Determination of First Flush Criteria in Highway Stormwater Runoff using Dynamic EMCs (동적 EMC를 이용한 고속도로 초기우수 처리 기준 산정)

  • Kim, Lee-Hyung;Lee, Eun-Ju;Ko, Seok-Oh;Kim, Sung-Gil;Lee, Byung-Sik;Lee, Joo-Kwang;Kang, Hee-Man
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.294-299
    • /
    • 2006
  • The Ministry of Environment in Korea has introduced Total Pollution Load Management System (TPLMS) in major 4 large rivers to protect the water quality from possible pollutants. In order to successfully achieve the TPLMS, the nonpoint source should be controled by applying the best management practices in highly polluted areas. Of the various nonpoint sources, the highways are stormwater intensive landuses because of its high imperviousness and high pollutant mass emissions. The EMC (Event Mean Concentration) is an important parameter to correctly determine the pollutant mass loadings from nonpoint sources. However, it has wide ranges because of various reasons such as first flush phenomenon, rainfall and watershed characteristics. Even though the EMC is closely related to the first flush phenomenon, the relationship have not proven until present. Therefore, in this paper, the dynamic EMC method will be introduced to clearly make the relationship between EMC and first flush phenomenon. Also by applying the dynamic EMC method to monitored data, we found that the highly concentrated stormwater runoff was washed off within 20~50 minutes storm duration. The first flush criteria for economical treatment was also determined to 5~10 mm (mean=7.4 mm) as a cumulative rainfall.

Determination of EMCs and Comparison with Sampled Concentrations in Paved Areas (포장지역에서의 강우사상별 EMC 산정 및 단순 샘플농도와의 비교)

  • Lee, Eun-Ju;Ko, Seok-Oh;Kang, Hee-Man;Lee, Joo-Kwang;Lee, Byung-Sik;Lim, Kyeong-Ho;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.104-109
    • /
    • 2006
  • TPLMS programs in four large rivers have been developed to improve the water quality from possible pollutants originated from watershed areas. The success of TPLMS program is depended on nonpoint source control. Currently, the pollutant loading from nonpoint pollution sources is gradually increasing as developing the nearby watershed. However, there are not enough data concerning on nonpoint pollution in Korea because of lacking of monitoring activities. It is the main reason of uncertainty. Therefore, this manuscript will summarize the EMCs in various landuses based on monitoring program. Also the EMC in each paved area will be compared and discussed to find the differences. When the EMC is compared by average monitored sample concentrations, the EMC values are 2-4 times higher than sample concentrations. It means the monitoring program is very important in the field of nonpoint pollution. The pollutant loadings from bridge landuse is higher than loadings from parking lot and highway because of more traffic activities.