• Title/Summary/Keyword: TOC removal

Search Result 217, Processing Time 0.021 seconds

Effect of Light/dark Cycles on Wastewater Treatments by Microalgae

  • Lee, Kwangyong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • Chlorella kessleri cultivated in artificial wastewater using diurnal illumination of 12h light/12h dark (L/D) cycles. The inoculum density was 10(sup)5 cells/mL and the irradiance in light cycle was 45$\mu$mol㎡s(sup)-1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower tan that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested that C. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1mg NO$_3$-N/L from 168.1mg NO$_3$-N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.

  • PDF

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

Effects of pH on the growth, total nitrogen, total phosphorus and organic compound removal in heterotrophic culture of Chlorella sorokiniana applied wastewater treatment (pH와 탄소원이 Chlorella sorokiniana의 heterotrophic 배양 및 하폐수고도처리능에 미치는 영향)

  • Park, Jeong-Eun;Cho, Yong-Beom;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.703-709
    • /
    • 2013
  • Among many microalgae cultivation types, heterotrophic culture with low cost carbon sources and energy saving culture method is crucial. A result of estimating the effects of pH on wastewater treatment using heterotrophic growing microalgae Chlorella sorokiniana shows that there was no difference in microalgae growth amount and nitrogen, phosphorus removal rate by wide range of pH(5 ~ 9). From pH 5 to 9, total nitrogen, phosphorous and glucose removal rates were 10.5 mg-N/L/d, 2 mg-P/L/d, 800 ~ 1000 mg/L respectively. This study reveals that C. sorokiniana cannot metabolite glycerol heterotrophically, however, glucose and acetate were proper carbon sources for growth and T-N, T-P and TOC removal. This research highlights the potential of heterotrophic microalgal growth with wastewater treatment plant with wide range of pH and carbon sources.

Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes (오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구)

  • Jung, Yeon-Jung;Oh, Byung-Soo;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

A Study on Removal of Color in Dyeing Wastewater by Ozone Oxidation (오존산화에 의한 염색체수의 색도 제거에 관한 연구)

  • 정순형;최준호
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to remove the color in dyeing wastewater by ozone oxidation process, and the results were summarized as follows ; The 18.3% of BOD and 56.3% TOC were removed as decreasing with pH 1 in dyeing wastewater, containing the polyester reducing process. It showed that terephthalic acid was precipitated at low pH. The color of dyeing wastewater was removed by the first order reaction, and the reaction rate constants at pH 3, 7, 12 were investigated $0.234{\;}min^{-1},{\;}0.215{\;}min^{-1}{\;}and{\;}0.201{\;}min^{-1}$ respectively. It showed that color was more effectively removed with direct reaction of ozone than radical reaction(non-direct reaction). As increasing of the water temperature, the reaction rate constants were increased slightly. It indicated that activity of ozone was improved at high water temperature.

A Study on the Treatment of Organic Wastewater by Ozone Electrolysis (유기성 폐수의 오존전해처리에 관한 연구)

  • 정홍기;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.59-63
    • /
    • 1996
  • To treat certain wastewater that has alcohol and phenol, we performed the ozone electrolysis by using the titanium electrode. In this experiment, we examined decomposition voltage of organics, time for electrolysis, and removal efficiency of organics. In addition we compared the ozone oxidation electrolysis. The followings are results; 1. When it comes to the alcohol treatment in wastewater, ozone electrolysis showed higher removal efficiency than ozone oxidation or electrolysis. 2. After comparing the decomposition rate of methylalcohol, ethylalcohol, and prophylalcohol in ozone electrolysis, we knew the fact that increasing carbon number made the decomposition rate slow. 3. According to the treatment of alcohol by ozone electrolysis, decomposition voltage was 50V, time for electrolysis was three hours, and treatment acidity was neutral (pH 6.5 - 8.1). 4. Ozone electrolysis was effective to the phenol treatment. When we treated phenol by using ozone electrolysis for three hours, TOC treatment efficiency was 95%. However, ozone oxidation just showed 45% treatment efficiency.

  • PDF

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

Phenol Removal by Ozone-Activated Carbon Hybrid Process (오존-활성탄 복합공정에 의한 페놀 제거)

  • Kim, Hwanik;Moon, Ji-Hoon;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.311-316
    • /
    • 2014
  • Effects of operating parameters such as activated carbon dose and pH on the phenol oxidation in ozone-activated carbon hybrid process were investigated through a kinetic study. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting phenol degradation. The pseudo-first order rate constants of phenol degradation increased and half-life of phenol decreased with activated carbon dose. The increase of pH enhanced $OH{\cdot}$ generation through chain reactions initiated by $OH^-$, therefore increasing the phenol degradation rate. TOC removal efficiency increased about 3.2 times by adding activated carbon in ozonation process.

Oxidation of Organics Using a Direct Reaction of Peroxyl Radical and Ozone (페록시라디칼과 오존의 직접 반응을 이용한 유기물의 산화)

  • Choi, Seungpil;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.41-47
    • /
    • 2010
  • This study was conducted to assess the applicability of pilot scale system and to evaluate the treatment efficiency on operational parameters such as humic acid concentration, initial pH and air flow rate on the ozone/peroxyl radical reaction system. The decolorization of ozone/peroxyl radical system was higher than that of only process. Removal efficiency of ozone/peroxyl radical system was generally increased with the increase of intial concentration of humic acid but decreased over the range of 30mg/L. Treatment efficiency of HA at acid pH was smaller compared to that of neutral or basic pH and increased with increasing the air flow rate from 1L/min to 3L/min. In pilot-scale test, average removal of TOC and $COD_{Cr}$ was about 70% and 60%, respectively and ozone/peroxyl radical reaction system was indicated a potential in water treatment application.

A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process (오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.490-495
    • /
    • 2012
  • The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.