Abstract
Chlorella kessleri cultivated in artificial wastewater using diurnal illumination of 12h light/12h dark (L/D) cycles. The inoculum density was 10(sup)5 cells/mL and the irradiance in light cycle was 45$\mu$mol㎡s(sup)-1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower tan that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested that C. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1mg NO$_3$-N/L from 168.1mg NO$_3$-N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.