• Title/Summary/Keyword: TLR signaling

Search Result 188, Processing Time 0.019 seconds

In Silico Evaluation of Deleterious SNPs in Chicken TLR3 and TLR4 Genes

  • Shin, Donghyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.209-217
    • /
    • 2018
  • The innate immune recognition is based on the detection of microbial products. Toll-like receptors (TLRs) located on the cell surface and the endosome senses microbial components and nucleic acids, respectively. Chicken TLRs mediate immune responses by sensing ligands from pathogens, have been studied as immune adjuvants to increase the efficacy of vaccines. Single nucleotide polymorphisms (SNPs) of TLR3 and TLR4 genes in chicken were associated with resistance and susceptibility to viral infection. In this study, SNPs of chTLR3 and chTLR4 genes were retrieved from public database and annotated with chicken reference genome. Three-dimensional models of the chTLR3 and chTLR4 proteins were built using a Swiss modeler. We identified 35 and 13 nsSNPs in chTLR3 and chTLR4 genes respectively. Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (Polyphen-2) analyses, suggested that, out of 35 and 13 nsSNPs, 4 and 2 SNPs were identified to be deleterious in chTLR3 and chTLR4 gene respectively. In chTLR3, 1 deleterious SNP was located in ectodomain and 3 were located in the Toll / IL-1 receptor (TIR) domain. Further structural model of chTLR3-TIR domain suggested that 1 deleterious SNP be present in the B-B loop region, which is important for TIR-TIR domain interactions in the downstream signaling. In chTLR4, the deleterious SNPs were located both in the ectodomain and TIR domain. SNPs predicted for chTLR3 and chTLR4 in this study, might be related to resistance or susceptible to viral infection in chickens. Results from this study will be useful to develop the effective measures in chicken against infectious diseases.

Effect of Germinated Brown Rice on LPS-Induced Inflammation in Adipocytes (발아현미가 LPS로 유도된 지방세포의 염증반응에 미치는 영향)

  • Park, Mi-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Germinated brown rice (GBR, Orysa sartiva L.) has been reported to have anti-obesity and anti-inflammatory effects. However, the mechanisms underlying these effects in adipocytes are not fully understood. Therefore, this study was conducted to explore the anti-inflammatory mechanisms of GBR on lipopolysaccharide (LPS)-stimulated 3T3-L1 adipocytes. 3T3-L1 adipocytes were pretreated with GBR extracts (0-20 mg/mL) 1 h before LPS stimulation. The mRNA expression of adipokines and Toll-like receptor 4 (TLR4) were measured by RT-PCR. The protein expressions of TLR4-related molecules were detected by western blotting and nuclear factor-${\kappa}B$ ($NF-{\kappa}B$) activation was measured. Our results showed that GBR extract dose-dependently inhibited mRNA expression of LPS-induced tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). GBR extract was found to inhibit LPS-induced mRNA expression of TLR4 and protein expression of both myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Furthermore, GBR extract significantly inhibited extracellular receptor-activated kinase (ERK) phosphorylation and $NF-{\kappa}B$ activation. These results suggest that GBR extract has the anti-inflammatory effects on LPS-induced inflammation via inhibition of TLR4 signaling, includingthe ERK and $NF-{\kappa}B$ signaling pathways, in adipocytes.

TRIF Deficiency does not Affect Severity of Ovalbumin-induced Airway Inflammation in Mice

  • Kim, Tae-Hyoun;Kim, Dong-Jae;Park, Jae-Hak;Park, Jong-Hwan
    • IMMUNE NETWORK
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Allergic asthma is a chronic pulmonary inflammatory disease characterized by reversible airway obstruction, hyperresponsiveness and eosinophils infiltration. Toll-like receptors (TLRs) signaling are closely associated with asthma and have emerged as a novel therapeutic target in allergic disease. The functions of TLR3 and TLR4 in allergic airway inflammation have been studied; however, the precise role of TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF), the adaptor molecule for both TLR3 and TLR4, is not yet fully understood. To investigate this, we developed a mouse model of OVA-induced allergic airway inflammation and compared the severity of allergic airway inflammation in WT and $TRIF^-/^-$ mice. Histopathological assessment revealed that the severity of inflammation in airway inflammation in TRIF-deficient mice was comparable to that in WT mice. The total number of cells recovered from bronchoalveolar lavage fluid did not differ between WT and TRIF-deficient mice. Moreover, TRIF deficiency did not affect Th1 and Th2 cytokine production in lung tissue nor the level of serum OVA-specific IgE, $IgG_1$ and $IgG_{2c}$. These findings suggest that TRIF-mediated signaling may not be critical for the development of allergic airway inflammation.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels (진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과)

  • Lee, Kyung-Ae;Park, Hye-Ryung
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

NF-${\kappa}$ B Activation and Cyclooxygenase-2 Expression Induced by Toll-Like Receptor Agonists can be Suppressed by Isoliquiritigenin (Isoliquiritigenin의 toll-like receptor agonists에 의해서 유도된 NF-${\kappa}$B 활성화와 cyclooxygenase-2 발현 억제)

  • Park, Se-Jeong;Yang, Seung-Ju;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2009
  • Toll-like receptors(TLRs) are pattern recognition receptors(PRRs) that recognize pathogen-associated molecular patterns(PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}$B, leading to the induction of inflammatory gene products such as COX-2. Licorice (Glycyrrhiza uralensis) has been used for centuries as an herbal medicine. Isoliquiritigenin(ILG), a simple chalcone-type flavonoid, is an active component present in licorice and has been used to treat many chronic diseases. However, the mechanism as to how ILG mediates health effects is still largely unknown. In the present report, we present biochemical evidence that ILG inhibits the NF-${\kappa}$B activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, IKK${\beta}$, and p65. ILG also inhibits TLR agonists-induced COX-2 expression. These results suggest that anti-inflammatory effects of ILG are caused by modulation of the immune responses regulated by TLR signaling pathways.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages (고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석)

  • Yang, Chul-Su;Ko, Sung-Ryong;Cho, Byung-Goo;Lee, Ji-Yeon;Kim, Ki-Hye;Shin, Dong-Min;Yuk, Jae-Min;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.

Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

  • Seong, Kyung-Joo;Lee, Hyun-Gwan;Kook, Min Suk;Ko, Hyun-Mi;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activating TLR4-NF-${\kappa}B$ signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-${\kappa}B$ pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPS-induced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.