• Title/Summary/Keyword: TEM Journal

Search Result 3,012, Processing Time 0.029 seconds

Formation Dynamics of Carbon Atomic Chain from Graphene by Electron Beam Irradiation

  • Park, Hyo Ju;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.126-127
    • /
    • 2018
  • Carbon has numerous allotropes and various crystalline forms with full dimensionalities such as diamond, graphite, fullerenes, and carbon nanotubes leading a wide range of applications. Since the emerge of graphene consisting of a single atomic layer of carbon atoms, a fabrication of all-carbon-based device with combination of one-, two-, and three-dimensional carbons has become a hot issue. Here, we introduce an ultimate one-dimensional carbon atomic chain. Carbon atomic chains were experimentally created by removing atoms from monolayer graphene sheet under electron beam inside transmission electron microscope (TEM). A series of TEM images demonstrate the dynamics of carbon atomic chains over time from the formation, transformation, and then breakage.

An Electron Microscopic Investigation of the Structure of Thin Film Tin Oxide Material

  • Jeon, Eok-Gui;Choy, Jin-Ho;Choi, Q.-won;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.304-308
    • /
    • 1985
  • Morphological structure of tin oxide thin films was examined by transmission electron microscopy. TEM samples were prepared by chemical etching in hydrogen fluoride solution: firstly floating for 2-3 minutes in acid solution, then suspending on water found to be useful for the preparation of TEM samples. Electron micrographs showed the size of grains of the tin oxide crystal was dependent upon the temperature of the film preparation. Dopant concentration and heating time also influence the grain size. The resistivity of tin oxide material was explained by grain size and grain boundaries in a limited temperature and dopant concentration ranges.

Analysis of Oxide Layers in Phase Boundary Crack of Cast Austenitic Stainless Steel (주조 오스테나이트 스테인리스강 상경계 균열부 산화물 분석)

  • Min-Jae Choi;Sung-Woo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2023
  • For the phase boundary crack found in the gasket made of cast austenitic stainless steel in the nuclear power plant, the oxide layers were analyzed through SEM and TEM. The results showed that cracks initiated and propagated along the austenite/δ-ferrite phase boundary, the propagation path was changed to penetrate the inside of the phase. The oxide layer located at the periphery of the crack along the phase boundary was identified as a complex multi-layered spinel structure, and Cr-rich carbides were also detected in the oxide. The cracks that propagated inside the austenite matrix were attributed to the presence of high external stresses and impurities.

Comparative study on the specimen thickness measurement using EELS and CBED methods

  • Yoon-Uk Heo
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.8.1-8.7
    • /
    • 2020
  • Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-Möllenstedt (K-M) fringe of the $13{\ba{1}}$ diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72 ~ 113 nm with a difference of less than 5%.

Microstructure analysis of 8 ㎛ electrolytic Cu foil in plane view using EBSD and TEM

  • Myeongjin Kim;Hyun Soon Park
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.2.1-2.6
    • /
    • 2022
  • With the lightening of the mobile devices, thinning of electrolytic copper foil, which is mainly used as an anode collection of lithium secondary batteries, is needed. As the copper foil becomes ultrathin, mechanical properties such as deterioration of elongation rate and tear phenomenon are occurring, which is closely related to microstructure. However, there is a problem that it is not easy to prepare and observe specimens in the analysis of the microstructure of ultrathin copper foil. In this study, electron backscatter diffraction (EBSD) specimens were fabricated using only mechanical polishing to analyze the microstructure of 8 ㎛ thick electrolytic copper foil in plane view. In addition, EBSD maps and transmission electron microscopy (TEM) images were compared and analyzed to find the optimal cleanup technique for properly correcting errors in EBSD maps.

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

Annealing Effect on Adhesion Between Oxide Film and Metal Film (산화막위에 증착된 금속박막과 산화막과의 계면결합에 영향 미치는 열처리 효과)

  • Kim Eung Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The interfacial layer between the oxide film and the metal film according to RTP annealing temperature of metal film has been studied. Two types of oxides, BPSG and PETEOS, were used as a bottom layer under multi-layered metal films. We observed the interface between oxide and metal films using SEM (scanning electron microscopy), TEM (transmission electron microscopy), AES (auger electron spectroscopy). Bonding failure was occurred by interfacial reaction between the BPSG oxide and the multi-layered metal films above $650^{\circ}C$ RTP anneal. The phosphorus accumulation layer was observed at interface between BPSG oxide and metal films by AES and TEM measurements. On the other hand, bonding was always good in the sample using PETEOS oxide as a bottom layer. We have known that adhesion between BPSG and multi-layered metal films was improved when the sample was annealed below $650^{\circ}C$.

Microstructure of GaN films on sapphire surfaces with various orientations (사파이어 기판 방향성에 따른 GaN 박막의 미세구조)

  • 김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.162-167
    • /
    • 1999
  • GaN epilayers deposited by the OMVPE method on sapphires with 3 different surface orientations were investigated by TEM and their difference in mucrostructure were compared with each other. GaN epilayers were grown on the all three kinds of sapphire substrates; however, the best interfacial state and crystallinity were observed in the specimen using a {0001} substrate The density of defects in GaN epilayers on {0001} substrates was also less than others. No buffer layer was found at the interfaces of all the specimens; however, it was observed that the region which shows lattice distortion at the interface was only a few nonameter wide. Accordingly, TEM investigation revealed that GaN epilayers having some internal defects could be grown on sapphire {1120} and {1102} planes without a buffer layer, and the hetero-epitaxial GaN films were obtained from the specimen using {0001} substrates with the microstructural point of view.

  • PDF

Protection Effect of Natual Matter and Radiation Damage on Kidney Tissue (신장 조직의 방사선 손상과 천연물질의 방어기전 연구)

  • Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.376-384
    • /
    • 2009
  • This research has microstructure observation to find tissue damage mechanism and radio-protection effect on mouse kidney tissue. The result observation of a Light Microscope(LM); The kidney tissue after 5Gy irradiation observed a glomerulus atrophy, also crack distance to base membrane of a convoluted tubules. The kidney tissue after 10Gy irradiation observed out flow cytoplasm to membrane break of a convoluted tubules. The result observation of a Transmission Electron Microscope(TEM); The kidney tissue of after 5Gy irradiation has to breaking a inside cristae and membrane of mitochondria, also show definite damage of nucleus membrane. 10Gy irradiation has all the more damage a base membrane and thickness of lysosome. However, Propolis eating groups observed normal to nucleus membrane and small body of intracellular. therefore We considered "Propolis" as make radio protection function to kidney tissue of the greater part.

Study on the Defect Mechanism of Immersion Gold Layer (Immersion gold층의 결함 메카니즘 연구)

  • Lee, Dong-Jun;Choi, Jin-Won;Cho, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.35-40
    • /
    • 2008
  • Investigation on immersion gold layers was carried out using TEM analysis for the purpose of understanding the defect of immersion gold layer. The immersion gold layers prepared with three different types of baths were observed. The results showed that the defect structure of immersion gold layer is strongly dependent on the types of gold baths. Spherical defects of average 10 nm size were located along the grain boundaries for the specimen formed at KAu$(CN)_2$ bath containing no reducing agent. In the case of the specimen processed at KAu$(CN)_2$ bath containing a reducing agent, the spherical defects of 5-10 nm size were distributed randomly in grains as well as at grain boundaries. However, such defects disappeared almost completely when $Na_{3}Au(SO_3)_2$ bath was used to fabricate an immersion gold.

  • PDF