• Title/Summary/Keyword: TCO (transparent conducting oxide)

Search Result 142, Processing Time 0.038 seconds

Multi-film coated bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (다층박막 코팅된 PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.646-648
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

  • PDF

The optical, electrical and structural properties in indium zinc oxide films deposited by LF magnetron sputtering

  • Kim, Eun-Lyoung;Jung, Sang-Kooun;Kim, Myung-Chan;Lee, Yun-Su;Song, Kap-Duk;Park, Lee-Soon;Sohn, Sang-Ho;Park, Duck-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1402-1405
    • /
    • 2006
  • Using a indium zinc oxide (IZO) alloy target with a ratio of 90:10 in wt%, highly transparent conducting oxide (TCO) thin films are prepared on polyethersulfone (PES) substrates by lowfrequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. Experiments were carried out as a function of applied voltage. At optimal deposition conditions, thin films of IZO with a sheet resistance of 29 ohm/sq. and an optical transmission of over 82 % in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation or any additional post-deposition annealing treatment.

  • PDF

Thermal Treated Al-doped Zinc Oxide (AZO) Film-embedding UV Sensors

  • Kim, Jun-Dong;Yun, Ju-Hyeong;Ji, Sang-Won;Park, Yun-Chang;Anderson, Wayne A.;Han, Seok-Gyu;Kim, Yeong-Guk;Kim, Jae-Hyeon;Anderson, Wayne A.;Lee, Jeong-Ho;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • Transparent conducting oxide (TCO) films have been intensively utilized in the electric applications, such as, displays, lightings and solar cells due to the good electric conductivity with an excellent transmittance of the visible light. We, herein present an excellent Al-doped ZnO film (AZO), which has been fabricated by co-sputtering method. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of $7.8{\times}10^{-3}{\Omega}cm$. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and $1{\times}10^{-3}{\Omega}cm$, respectively. The fabricated AZO film was fabricated for a metal-semiconductor-metal (MSM) structure. The AZO film-embedding MSM device was highly responsive to a UV light.

  • PDF

DC-sputtering으로 증착한 IZO 박막의 열처리 온도에 따른 구조적 특성

  • Kim, Jun-Ho;Mun, Jin-Yeong;Kim, Hyeong-Hun;Lee, Ho-Seong;Han, Won-Seok;Jo, Hyeong-Gyun;Kim, Heung-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.468-468
    • /
    • 2008
  • IZO(Indium zinc oxide) 박막은 화학적으로 안정하면서, 가시광 영역 (380~780 nm)에서 80% 이상의 높은 투과도와 낮은 전기비저항, 3.5 eV 이상의 넓은 밴드갭 특성을 가진다. IZO 박막의 이러한 특성 때문에 평판표시소자 (Flat Panel Display; FPD) 및 태양전지와 같은 광전소자들의 차세대 투명전도성 산화물(Transparent Conducting Oxide; TCO) 박막 재료로 주목 받고 있다. 특히 평판표시소자(FPD)들의 고해상도, 대면적화 및 경량화로 인해 투명전극용 박막의 고품위 특성이 요구되고 있다. 현재 투명 전극으로 널리 사용되고 있는 고가의 ITO(indium tin oxide)를 대체할 다성분계 산화물 투명 전극 중에서 투광성과 전기전도도가 좋은 IZO 박막에 대한 많은 연구가 진행되고 있다. 이러한 IZO 박막의 광학적, 전기적 특성은 박막 내의 조성 차이와 미세구조에 의해 결정된다. 따라서 고품위의 IZO 박막 형성을 위해서 결정구조와 미세구조에 대한 분석이 필수적이다. 본 연구에서는 Si(100) 기판 위에 DC-sputtering으로 증착한 IZO 박막의 열처리 온도에 따른 구조적 특성을 알아보기 위해 300~$600^{\circ}C$ 공기분위기에서 1시간 동안 열처리 하였다. 표면 형상(surface morphology)은 원자현미경(AFM). 결정구조는 X-선 회절(XRD)로 분석하였고, 미세구조는 투과전자현미경(TEM)으로 관찰하였다.

  • PDF

The fabrication of textured ZnO:Al films using HCI wet chemical etching (후 식각법을 이용한 Textured ZnO:Al 투명전도막 제조)

  • Yoo, Jin-Su;Lee, Jeong-Chul;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1482-1484
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures $({\leq}300^{\circ}C)$, the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Effect of annealing om p-type Al/SnO2 transparent conductive multilayer films (p-형 Al/SnO2 투명 전도성 다층박막에 미치는 열처리의 영향)

  • Park, Geun-Yeong;Kim, Seong-Jae;Gu, Bon-Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.27-28
    • /
    • 2014
  • 투명전극이란 전기 전도도를 갖는 동시에 가시광선 영역에서 빛을 투과하는 성질을 가지는 소재이다. 일반적으로 가시광선 영역(380nm~780nm)에서 80%이상의 광 투과도를 가지며, 비저항이 $10^{-3}{\Omega}{\cdot}cm$ 이하, optical band gap 이 3.3 eV 이상인 물질을 TCO(Transparent Conducting oxide)라고 한다. 현재까지 국내의 TCO 관련 연구는 터치패널, 디스플레이, 태양전지 등 광전자분야에서 가장 널리 사용되고 있는 ITO(Sn:In2O3)에 치중되어 있으며, 관련 연구도 거의 디스플레이 맞춤형 연구개발이 주류를 이루어왔다. ITO가 전기전도성이 우수하고 동시에 가시광선 영역에서의 투과율도 80%이상으로 전기적, 광학적 특성이 우수하다는 장점을 가지고 있으나, In의 희소성으로 인한 고가격, 유독성, 접착력 문제 때문에 이를 대체하기 위해 제조원가가 ITO에 비하여 월등히 저렴하고 내화학성과 내마모성이 우수하면서도, 가시광선 영역에서의 광투과율이 80%이상으로 좋다는 $SnO_2$에 관한 연구가 활발히 진행되어 왔다. 적절한 dopant를 첨가하여 $SnO_2$자체의 높은 광학적 투과도를 유지하면서 전기전도성을 더 높일수 있고, 투명전극이 가져야 할 고온 안정성을 가지고 있으며 비독성이고 수소 플라즈마에 대한 내성이 더 클 뿐만 아니라 저온에서 성장이 가능하다. $SnO_2$의 전기 전도도를 높이기 위한 Al, In, Ga, B와 같은 3족 원소가 $SnO_2$의 n형 dopant로 널리 사용되고 있다. 그 중 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면, 전기적 특성 및 광학적 특성의 향상을 이룰 수 있다. 본 연구에서는 Rf Sputtering법을 사용하여 quartz기판 위에 다층박막 형태의 투명전도막을 제작한 후, 열처리를 수행, 이에 의한 다층박막 내 계면간 상호확산 현상을 이용하여 투명 전도막의 특성변화를 관찰하였다. 박막의 구조적 특성은 XRD장비를 사용하여 분석하였으며, 전기적, 광학적 특성은 각각 표면저항기, 홀 측정 장비, 그리고 UV-VIS-NI를 사용하여 확인하였다.

  • PDF

Characteristics of Transparent Mim Capacitor using HfO2 System for Transparent Electronic Device (투명전자소자를 위한 HfO2계 투명 MIM 커패시터 특성연구)

  • Jo, Young-Je;Lee, Ji-Myon;Kwak, Joon-Seop
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • The effects of $HfO_2$ film thickness on electrical, optical, and structural properties were investigated. We fabricated ITO/$HfO_2$/ITO metal-insulator- metal (MIM) capacitor using transparent conducting oxide. When $HfO_2$ film thickness increase from 50 nm to 300 nm, dielectric constant of $HfO_2$ was decreased from 20.87 to 9.72. The transparent capacitor shows an overall high performance, such as a dielectric constant about 21 by measuring the ITO/$HfO_2$/ITO capacitor structures and a low leakage current of $2.75{\times}10^{-12}\;A/cm^2$ at +5 V. Transmittance above 80% was observed in visible region.

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Thermal Effect on Characteristics of IZTO Thin Films Deposited by Pulsed DC Magnetron Sputtering

  • Son, Dong-Jin;Ko, Yoon-Duk;Jung, Dong-Geun;Boo, Jin-Hyo;Choa, Sung-Hoon;Kim, Young-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.847-851
    • /
    • 2011
  • This study examined In-Zn-Sn-O (IZTO) films deposited on glass substrates by pulsed DC magnetron sputtering with various substrate temperatures. The structural, electrical, optical properties were analyzed. Xray diffraction showed that the IZTO films prepared at temperatures > $150^{\circ}C$ were crystalline which adversely affected the electrical properties. Amorphous IZTO films prepared at $100^{\circ}C$ showed the best properties, such as a low resistivity, high transmittance, figure of merit, and high work function of $4.07{\times}10^{-4}\;{\Omega}$, 85%, $10.57{\times}10^{-3}\;{\Omega}^{-1}$, and 5.37 eV, respectively. This suggests that amorphous IZTO films deposited at relatively low substrate temperatures ($100^{\circ}C$) are suitable for electrode applications, such as OLEDs as a substitute for conventional crystallized ITO films.

AFM morphology of $TiO_2$ electrode with differential sintering temperature and efficiency properties Dye-Sensitized solar cells (소결 온도 변화에 따른 $TiO_2$ 전극의 AFM 표면형상 비교 및 DSC 효율 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.461-462
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature(350 to $550^{\circ}C$). $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSC were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). From the measurement results, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSC were mutually complementary, enhancing highest fill factor and efficiency. Consequently, it was considered that optimum sintering temperature of $\alpha$-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

  • PDF