T1-P022

Thermal Treated Al-doped Zinc Oxide (AZO) Film-embedding UV Sensors

<u>김준동</u>¹, 윤주형², 지상원³, 박윤창⁴, 주민규^{5,6}, 한석규⁶, 김영국⁵, 김재현¹, **Wayne A. Anderson**², 이정호³, 이준신⁵

¹한국기계연구원, ²University at Buffalo, State University of New York, ³한양대학교, ⁴나노팹센터, ⁵성균관대학교, ⁶KPE

Transparent conducting oxide (TCO) films have been intensively utilized in the electric applications, such as, displays, lightings and solar cells due to the good electric conductivity with an excellent transmittance of the visible light.

We, herein present an excellent Al-doped ZnO film (AZO), which has been fabricated by co-sputtering method. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of $7.8 \times 10^{-3} \Omega$ cm. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and $1 \times 10^{-3} \Omega$ cm, respectively.

The fabricated AZO film was fabricated for a metal-semiconductor-metal (MSM) structure. The AZO film-embedding MSM device was highly responsive to a UV light.

Keywords: Thermal Treatment, Al-doped Zinc Oxide (AZO), Metal-semiconductor-metal (MSM), UV sensors