• Title/Summary/Keyword: T-part

Search Result 3,561, Processing Time 0.031 seconds

BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.585-598
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties. To show these properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Choi, Sang Il;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2017
  • This paper shows that the solutions to the perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$, have bounded properties by imposing conditions on the perturbed part ${\int}_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

BOUNDEDNESS IN THE NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.105-117
    • /
    • 2016
  • This paper shows that the solutions to the nonlinear perturbed differential system $y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$, have the bounded property by imposing conditions on the perturbed part $\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y′ = f(t, y) using the notion of h-stability.

Life history and growth pattern on the erigeron annuus (개망초 ( Erigeron annuus L. ) 의 生活史 및 生育特性)

  • Lee, Ho-Joon;Tae-Sung Kim
    • The Korean Journal of Ecology
    • /
    • v.14 no.2
    • /
    • pp.211-230
    • /
    • 1991
  • The germinatin of e. annuus continued from the middle ofmay to mid-october. The maximum germination occurred on the mid-july. The period bloom of was distingushed amongs the different growth forms ; a orm pr of biennial and a form of pr perennial flowering from the mid-may to mid-september, and a form ps biennial blossom from the beginning of October to earlynovember. the dispersal of seed for(a form pr)occurred from early June to the mid-september. A rotte, germinating from summer to autumn, could classified into several growth forms; individuals without a critical leaf area for bolting until september and October, become a form ps of biennial, whicth did not proceed toreproductive growth unitl the next year, even thought wintering. individuals flowered on 3 years after germination become a form pr of perennial. The growth formular of aform pr of bennial, grown in a pot was w=20.2[1+$3.36{\times}10^3$(-0.062t)]$^{-1}$. The maximum relative growth rate(rgr) was 0.062g/g/day and the maximum net assimlation rate(nar) 0.089g/g/day. Therelative growth among each organ was shown as R=0.12 $T^{1.15}$between the avove-ground part(t) and the below- ground part(r). the relation between the avove-ground part(t) and the ratio of stem weight(wi) was ws/wi=2.56 $T^{0.35}$. n.p.k. was largely distributed on a leaf throughoutthe total growth period. while growing, it tended to decrease on the vegetative organ gut vice versa on the reproductive organ. however, nitrogen was more widely distributed on a leaf then in the reproductive organ.

  • PDF

Relationship between Pod Development and Endogenous Cytokinin Content of the Floral Organ in Peanut

  • Cheong, Young-Keun;Doo, Hong-Soo;Park, Ki-Hun;Cho, Sang-Kyun;Ryu, Jeom-Ho;Lee, Moon-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.8-12
    • /
    • 2003
  • To find out the relationship between pod development and cytokinin contents during reproductive stage of peanut, the cytokinin contents, trans-zeatin ribo-side (t-ZR) and dihydrozeatin riboside (diZR), were investigated at 0, 7, 14, 21 and 28 days after flowering (DAF). The amounts of t-ZR and diZR in cotyledon and first branch among primary branches were 3, 448 pmol/g (FW) and 4, 824 p/g (FW), respectively, which were higher than those of other branches. The t-ZR and diZR contents of lower parts on the branch from cotyledon node at 7 DAF were 579 pmol/g (FW) and 2, 028 pmol/g (FW), respectively, which were higher than those of upper parts. The cytokinin contents of reproductive organs as flowering progressed were increased at 0 and 14 DAF on branch and position of node. The cytokinin contents of upper part with pruning the lower part on the branch from cotyledon node were high 112-337% at 7 DAF and 14 DAF compared with those of the control. In case of remove the upper part of the first internode on main axis, t-ZR contents was 4.7 times higher than diZR contents at 7 DAF. The pod setting rate of flower and position on the branch from cotyledon node was closely related to the cytokinin contents during floral reproductive stage.

Optimization of Distributed Autonomous Robotic Systems Based on Artificial Immune Systems

  • Hwang, Chul-Min;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.

  • PDF

Design of a Gimbal-Structured Micro Gyroscope and Signal Processing Part

  • Song, J.W.;Lee, J.G.;Kim, W.T. Sung;Lim, H.T.;Kim, Y.K.;Kim, T. Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.3-167
    • /
    • 2001
  • In this paper, a single degree-of freedom gimbal-structured micro gyroscope and signal processing part including capacitive sensing circuits and filters are designed, fabricated and experimented. We use capacitive sensing method with excitation signal, i.e. sensing excitation signal, to measure the displacement of the moving plate. So, Sensing Output Signal is modulated twice by the excitation signal and driving signal, which is profitable to decouple the driving and sensing mode, to reduce the effect of the acceleration, and to curtail the noises due to parasitic capacitance and driving signal. To reduce driving noises and to improve linearity, the excitation signals and driving signals are modified. Through frequency response analyses ...

  • PDF

A Vibration Control of the Strcture using Immune Response Algorithm (면역반응 알고리즘을 이용한 구조물의 진동제어)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

Effects of Tool Rotation and Transition Speed during Friction Stir Welding of Al 7075-T651 Alloy (Al 7075-T651의 마찰교반 용접에 대한 회전속도와 이송속도의 영향)

  • Han, Min-Su;Jeon, Jeong-Il;Jang, Seok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.532-539
    • /
    • 2007
  • The 7075-T651 Al alloy was welded by friction stir welding. Microstructure, macro behaviors and fracture type in the nugget, thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ) of the welded part were compared to base metal. The microsturctures of nugget zone were compared with tool rotation speeds and various tool transition speed. When the rotation speeds were decreased and transition speeds were increased, the hardness of nugget zone were decreased. Also, the optimal microstructure was observed at the low rotation speed of 800rpm and the high transition speed of 124mm/min. The transgranular dimple and quasi-cleavage at fractured part of nugget zone were investigated.

PERTURBATIONS OF FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.225-238
    • /
    • 2019
  • We show the boundedness and uniform Lipschitz stability for the solutions to the functional perturbed differential system $$y^{\prime}=f(t,y)+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^t}g(s,y(s),\;T_1y(s))ds+h(t,y(t),\;T_2y(t))$$, under perturbations. We impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s)$, $T_1y(s))ds$, $h(t,y(t)$, $T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.