• Title/Summary/Keyword: T-cell response

Search Result 886, Processing Time 0.029 seconds

Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine

  • Zhang, Cong;Zhou, Jiangfei;Liu, Zhixin;Liu, Yongqing;Cai, Kairui;Shen, Tengfei;Liao, Chengshui;Wang, Chen
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.817-826
    • /
    • 2018
  • The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.

Effect of a Mixture of Conjugated Linoleic Acid (CLA) Isomers on T Cell Subpopulation and Responsiveness to Mitogen in Splenocytes of Male Broiler Chicks

  • Takahashi, Kazuaki;Kawamata, Kenji;Akiba, Yukio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.954-961
    • /
    • 2007
  • The experiments were conducted to determine effects of a mixture of conjugated linoleic acid (CLA) isomers on T cell subpopulations and responsiveness to mitogen of splenocytes in male broiler chicks. In experiment 1, birds (8-d old) were fed basal, CLA-(CLA) and safflower oil-supplemented (SA) diets which were formulated by supplementary 10 g CLA or safflower oil/kg to the basal diet for 14 d. Broiler starter diet, which mainly consisted of corn and soybean meal, was served as the basal diet. Proliferative response and interleukin (IL)-2-like activity stimulated by concanavalin (Con) A at a concentration of $10{\mu}g/ml$ of splenocytes in chicks fed the CLA diet were greater than in chicks fed the SA diet, but not at $20{\mu}g$ Con A/ml. Percentage of CD3-positive T cells in splenocytes did not differ between chicks fed the SA diet and CLA. Ratio of CD4-positive T cells to CD8- positive T cells was significantly affected by dietary fat source. In experiment 2, broiler chicks (1-d old) were fed the same diets as in experiment 1 for 14 d. Results of splenocyte proliferation to Con A were similar to those in experiment 1, but phytohemaggulutinin (PHA)- or pokeweed mitogen (PWM)- induced splenocyte proliferation did not differ between the CLA and SA fed groups. Supplementation with SA or CLA to the basal diet tended to have a depressive effect on the proliferation, with the greater effect being that of SA. In experiment 3, effect of an addition of CLA to splenocyte culture medium on splenocyte proliferation was determined. An addition of CLA to the culture medium resulted in reduction of the splenocyte proliferation to Con A, but an addition of linoleic acid. When PWM and PHA were used as mitogen, the inhibitory effect of CLA and linoleic acid on the proliferation did not differ. The results suggested that the effect of dietary CLA on splenocyte proliferation was similar to that of SA, although the effect of dietary CLA on sub-populations was slightly different from that of dietary SA. Further studies are needed to clarify whether use of CLA would be beneficial for maintaining or enhancing T cell immunity in chicks.

Immune-alteration Demonstrated at the Korean Vietnam War Veterans Exposed to Agent Orange (2,3,7,8-tetrachlorodibenzo-p-dioxin 노출과 관련한 인체면역기능 변화를 판단할 수 있는 지표치 개발에 관한 연구)

  • Heo, Yong;Kim, Eun-Mi;Yu, Ji-Yeon;Hong, Seung-Kwon;Jeon, Seong-Hoon;Kim, Hyoung-Ah;Cho, Dae-Hyun;Han, Soon-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.112-124
    • /
    • 2002
  • 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to exert detrimental toxicities on various organ systems including reproductive, cardiovascular, nervous, or dermal system. Immunomodulatory effects of TCDD is thymic atrophy, downregulation of cytotoxic T or B lymphocyte differentiation and activation, which were demonstrated using experimental animals, whereas immunotoxicity in human has not been investigated well. This study was proceeded to evaluate general immunologic spectrum of the Korean Vietnam War veterans exposed to TCDD during their operation, and compare with that of the non-exposed control subjects with similar age. Regarding composition and quantity, immune cells in peripheral blood collected from the TCDD-exposed was not much different from those of the control except decreased red blood cell, hemoglobin and hematocrit level. Furthermore, plasma IgG2, G3, and G4 isotype distribution was similar between two groups, but IgG1 level was significantly lowered in the TCDD-exposed, indicating a TCDD-mediated functional alteration of B cells. Significantly enhanced level of IgE in plasma, a hallmark of dermal or respiratory allergic response, was also observed in the TCDD-exposed compared with that of the control. Elevated generation of IL-4 and IL-10 was resulted from in vitro stimulation of T cells with PMA plus ionomycin or PHA, respectively, from the TCDD-exposed in comparison to those of the control, suggesting a skewed type-2 response. In addition, the level of IFN${\gamma}$, a multifunctional cytokine for T cell-mediated immunity, was lowered in the TCDD-exposed with upregulation of tumor necrosis factor $\alpha$. The present study suggests that TCDD exposure disturbs immunohomeostasis in humans observed as an aberrant plasma IgE and IgG1 levels and dysregulation of T cell activities.

  • PDF

Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine

  • Lee, Jun-Sik;Kim, Dae-Hyun;Lee, Chang-Min;Ha, Tae-Kwun;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Son, Kwang-Hee;Jung, In-Duk;Lee, Eun-Kyung;Shin, Yong-Kyoo;Ahn, Soon-Cheol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Background: Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-${\kappa}B$. Methods: The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results: DPT promoted the activation of $CD8^+$ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-${\gamma}$ production and induction of cytotoxic T lymphocyte activity. Conclusion: These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.

Gene Therapy Using GM-CSF Gene Transferred by a Defective Infectious Single-cycle Herpes Virus in Micro-residual Organotropic Head and Neck Squamous Cell Cancer Model (향장기성 두경부 편평세포암종의 미세잔존암 모델에서 GM-CSF 유전자를 이입시킨 제한복제성 헤르페스바이러스 벡터를 이용한 종양백신의 유전자 치료)

  • Kim Se-Heon;Choi Eun-Chang;Kim Han-Su;Chang Jung-Hyun;Kim Ji-Hoon;Kim Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • Background and Objectives: The Herpes Simplex type 2 Defective Infectious Single Cycle virus (DISC virus) is attenuated virus originally produced as viral vaccines but are also efficient gene transfer vehicle. The main goals of this study were to examine the efficiencies of the gene transfer using DISC vectors for various head and neck squamous cell carcinoma cell lines and to evaluate the efficacy of vaccination with DISC virus carrying a immunomodulatory genes (GM-CSF) as cancer therapy in a organotopic oral cavity squamous cell cancer model. Materials and Methods : We determinated the gene transfer efficiency of DISC virus by x-gal stain method and proved gene and protein expression of DISC-GMCSF transfected SCCVII cells by RT-PCR and ELISA method. Also we evaluated the ex vivo vaccination effects of SCCVII/GMCSF (DISC-GMCSF transfected SCCVII vaccine) vaccine on preventing the recurrence of micro-residual tumor. After the vaccination of SCCVII/GMCSF, specific cytotoxic T-cell responses was evaluated by CTL assay. Results: At an MOI of 10 DISC virus showed 64-88% of transfection rates in various head and neck squamous cancer cell lines. SCCVII cells transduced by DISC virus vector (MOI=10) carrying the GM-CSF gene, produced 4.5 nanogram quantities of GM-CSF per $10^6$ cells. In vivo vaccination using tumor cells transduced ex vivo with DISC-GMCSF resulted in better protection rate against subsequent tumor recurrence in organotopic oral cavity cancer model. Although tumor free survival rate was not statistically significantly increased in vaccination group (p=0.078), tumor specific cytotocic T-cell responses were significantly increased in SCCVII/GMCSF vaccination group. Conclusion: These data demonstrate that; 1) The DISC virus vector is capable of efficient gene transfer to various head and neck squamous cancer cell lines, 2) GM-CSF secreting genetically modified tumor vaccine (SCCVII/GMCSF) efficiently protected against tumor recurrence in organotopic micro-residual oral cavity cancer model and produced tumor specific cytotoxic T-cell response. DISC virus-mediated, cytokine gene transfer may prove to be useful as a clinical therapy for head and neck cancers.

Enhancement of Anti-tumor Immunity by Administration of Macrolepiota procera Extracts (큰갓버섯 추출물의 종양면역 증진 효과)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Yong;Lee, Kye-Heui;Kang, Tae-Bong;Yoon, Taek-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • To examine the potentiation of Macrolepiota procera extracts (MPE-4) to act as adjuvant enhancing the tumor specific anti-tumor immune response, tumor vaccine prepared by boiling (HK vaccine) admixed with MPE-4 and immunized in mice. Vaccination of mice with HK vaccine in combination with MPE-4 resulted in higher inhibition in tumor metastasis compared with the mice of HK vaccine alone treatment against live syngeneic tumor cell challenge. The splenocytes from mice immunized HK vaccine mixed with MPE-4 was able to elicit a stronger cytotoxic T lymphocyte (CTL) response as compared with HK vaccine alone. In addition, the splenocytes from MPE-4 admixed HK vaccine immunized mice secreted a higher concentration of Th1 type cytokine such as IFN-${\gamma}$, and GM-CSF. Furthermore, the adoptive transfer of splenocytes from mice immunized HK vaccine and MPE-4 led to a more robust anti-tumour response than the HK vaccine alone. Overall, these results indicate that MPE-4 is a good candidate adjuvant of anti-tumor immune response.

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model

  • Ahn Young Jeong;Pureum Lee;Moo-Seung Lee;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2023
  • Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

Immunotoxicity of Organophosphorous Pesticides, Pirimiphos-methyl and Methidathion in Balb/c Mice (Balb/c 마우스에서 유기인계 농약인 Pirimiphos-methyl 및 Methidathion의 면역독성)

  • Eam Juno H.;Chung Seung-Tae;Park Jae Hyun;Kil Jung Hyun;Lee Jong Kwon;Oh Hye Young;Kim Hyung Soo
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.329-337
    • /
    • 2004
  • Primiphos-methyl and methidathion as organophosphorus (OP) pesticides were tested for their immunotoxic effects on Balb/c mice. Three dose levels of primiphos-methyl (10, 60, or 120 mg/kg/day) and methidathion (0.5, 2.5 or 5.0 mg/kg/day) were administered orally in the mice for 4 weeks. After, changes in body weight gain, relative weight of spleen and thymus, viable splenic cell numbers, surface marker on immune cell, and proliferation activity were investigated. Results showed that neither Pirimiphos-methyl nor methidathion dosages changed significantly body weight, relative thymus and spleen weight, and thymus and spleen cellularities of the mice, but high dose treatment (120 mg/kg) of pirimiphos-methyl significantly decreased relative spleen weight and spleen cellularity of the mice. No alterations were observed in changes of LPS-proliferation response of splenocytes by exposure to any dose of pirimiphos-methyl and methidathion. However, pirimiphos-methyl dosages reduced ConA-proliferation response of splenocytes and both methidathion and pirimiphos-methyl decreased the ability of antibody production to SRBC. The results indicate that 28 days exposure to the high dose of pirimiphos-methyl suppress the function of splenic T and B cell function, and methidathion reduce the immune responsibility of B cell in mice without the changes in lymphoid organ weight or viability of splenocytes. Pirimiphos-methyl is more immunotoxic than methidathion although this has higher general toxicity than that.

Photoprotection by Topical DNA Repair Enzymes

  • Yarosh, Daniel B.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.186-189
    • /
    • 2002
  • Many of the adverse effects of solar UV exposure appear to be directly attributable to damage to epidermal DNA. In particular, cyclobutane pyrimidine dimers (CPD) may initiate mutagenic changes as well as induce signal transduction responses that lead to a loss of skin immune surveillance and micro-destruction of skin structure. Our approach is to reverse the DNA damage using prokaryotic DNA repair enzymes delivered into skin using specially engineered liposomes. T4 endonuclease V encapsulated in liposomes (T4N5 liposome lotion) enhanced DNA repair by shifting repair of CPD from the nucleotide excision to the base excision repair pathway. Following topical application to humans, increased repair limited UV-induction of cytokines, many of which are immunosuppressive. In a recent clinical study, topical treatment of UV-irradiated human skin with T4N5 liposome lotion reduced the suppression of the nickel sulfate contact hypersensitivity response. Similarly, the photoreactivating enzyme enhances repair by directly reversing CPDs after absorbing activating light. Here also treatment of UV-irradiated human skin with photoreactivating enzyme in liposomes and photoreactivating light restored the response to the contact allergen nickel sulfate. These findings confirm in humans the observation in mice that UV induced suppression of contact hypersensitivity is caused in part by CPDs. We have tested the ability of T4N5 liposome lotion to prevent UV-induced skin cancer in patients with xeroderma pigmentosum (XP), who have an elevated incidence of skin cancer resulting from a genetic defect in DNA repair. Daily use of the lotion for one year in a group of 20 XP patients reduced the average number of actinic keratoses by 68% and basal cell cancers by 30% compared to 9 patients in the placebo control group. Delivery of DNA repair enzymes to skin is a promising new approach to photoprotection.

  • PDF