• Title/Summary/Keyword: T-S 퍼지시스템

Search Result 170, Processing Time 0.025 seconds

Observer-Based Output Feedback Stochastic Stabilization for T-S Fuzzy Systems with Input Delay (입력지연을 갖는 T-S 퍼지 시스템의 관측기기반 출력궤환 확률적 안정화)

  • Lee, Sang In;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • This paper deals with a stochastic stabilization of observer-based output-feedback control Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The stochastic stabilizability of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). The usefulness of the proposed algorithm is also certificated by simulation of 2 degree of freedom helicopter model.

Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form (특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • This paper discusses a sampled-data controller design problem for nonlinear systems including singular perturbation. The concerned system is assumed to be modeled in Takagi--Sugeno (T--S) form. By introducing a novel Lyapunov function and an identity equation, the stability of the sampled-data closed-loop dynamics of the singularly perturbed T--S fuzzy system is analyzed. The design condition is represented in terms of linear matrix inequalities. A few discussions on the development are made that propose future research topics. Numerical simulation shows the effectiveness of the proposed method.

Robust Fuzzy Observer-Based Output-Feedback Controller for Networked Control Systems (네트워크 제어 시스템의 강인 퍼지 관측기 기반 출력궤환 제어기)

  • Jee, Sung-Chul;Lee, Ho-Jae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.464-469
    • /
    • 2009
  • This paper discusses a robust observer-based output-feedback stabilization of an uncertain Takagi-Sugeno (T-S) fuzzy system in a network. In the networked control system, the input delay occurs inevitably and it is expressed by the Markovian stochastic process. To design robust sampled-data observer-based output-feedback controller, we discretize the T-S fuzzy system and represent as a jump system. Stochastic robust stabilization condition is formulated in terms of linear matrix inequalities.

Sampled-Data Fault Detection Observer Design of Takagi-Sugeno Fuzzy Systems (타카기-수게노 퍼지 시스템을 위한 샘플치 고장검출 관측기 설계)

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • In this paper, we address fault detection observer design problem of T-S fuzzy systems with sensor fault. To detect fault, T-S fuzzy model-based observer is used. By introducing $\mathfrak{H}$_ performance index, an observer is designed as sensitive to fault as possible. The fault is then detected by a fault decision logic. The design conditions are derived in terms of linear matrix inequalities. An illustrative example is provided to verify the effectiveness of the proposed fault detection technique.

Observer-Based Output Feedback Stochastic Stabilizer for T-S Fuzzy Systems with Input Delay (입력지연을 갖는 T-S 퍼지 시스템의 관측기기반 출력궤환 안정화기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.840-843
    • /
    • 2003
  • 본 논문은 임의의 입력지연을 갖는 Takagi-Sugeno (T-S) 퍼지 시스템의 관측기 기반 출력궤환 제어 시스템을 논의한다. 설계된 연속시간 T-S 퍼지 관측기 시스템을 영차의 샘플/홀드 함수를 이용하여 이산시간 관측기를 설계한다. 이때 플랜트와 관측기의 출력에러가 제어기를 통하여 궤환되기 때문에 이산화 과정에서 발생한 에러를 보정할 수 있다. 여기에서 시스템의 제어 입력은 임의로 변화하는 유한개의 상태를 갖는 마코프 확률과정으로 표현한다. 생성된 시스템의 확률적 안정 가능성 조건은 선형 행렬 부등식의 형태로 표현한다. 이러한 결과를 2자유도 헬리콥터의 모델에 대한 모의실험을 통하여 효용성을 확인한다.

  • PDF

Making Robust Stochastic Stabilizer for Uncertain T-S fuzzy Systems with Input Delay (입력지연을 갖는 불확실 T-S 퍼지 시스템의 강인 디지털 확률적 안정화기 설계)

  • 이호재;박진배;김정찬;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper discusses a robust stochastic stabilization of uncertain Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretixzd T-S fuzzy system is represented by a uncertain discrete-time T-S fuzy system with jumping parameters. The robust stochastic stabilizibility of the uncertain jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Decentralized Fuzzy Output Feedback Controller for Nonlinear Interconnected System with Time Delay (시간 지연이 있는 비선형 상호 결합 시스템의 분산 퍼지 출력 궤환 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2008
  • In this paper, a decentralized fuzzy output feedback controller for nonlinear interconnected systems with time delay is proposed. The nonlinear interconnected system is represented to fuzzy system using Takagi-Sugeno (T-S) fuzzy model. The decentralized output feedback controller is designed(or stability of subsystems of the fuzzy interconnected system. The stable condition of the closed-loop subsystem is represented to the linear matrix inequality (LMI) form and control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

State Feedback Linearization of Discrete-Time Nonlinear Systems via T-S Fuzzy Model (T-S 퍼지모델을 이용한 이산 시간 비선형계통의 상태 궤환 선형화)

  • Kim, Tae-Kue;Wang, Fa-Guang;Park, Seung-Kyu;Yoon, Tae-Sung;Ahn, Ho-Kyun;Kwak, Gun-Pyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.865-871
    • /
    • 2009
  • In this paper, a novel feedback linearization is proposed for discrete-time nonlinear systems described by discrete-time T-S fuzzy models. The local linear models of a T-S fuzzy model are transformed to a controllable canonical form respectively, and their T-S fuzzy combination results in a feedback linearizable Tagaki-Sugeno fuzzy model. Based on this model, a nonlinear state feedback linearizing input is determined. Nonlinear state transformation is inferred from the linear state transformations for the controllable canonical forms. The proposed method of this paper is more intuitive and easier to understand mathematically compared to the well-known feedback linearization technique which requires a profound mathematical background. The feedback linearizable condition of this paper is also weakened compared to the conventional feedback linearization. This means that larger class of nonlinear systems is linearizable compared to the case of classical linearization.

Robust Mixed H2/H Filter Design for Uncertain Fuzzy Systems (불확실한 퍼지시스템의 견실한 혼합 H2/H 필터 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.557-562
    • /
    • 2004
  • This paper deals with a robust mixed ${H_2}/{H_{\infty}}$ filter design problem for a nonlinear dynamic system modeled as a T-S fuzzy system. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. A sufficient condition for solvability is given in terms of linear matrix inequality problem which can be efficiently solved using a convex optimization technique. In order to demonstrate the Proposed method, a numerical design example is provided.