• Title/Summary/Keyword: SystemVerilog

Search Result 197, Processing Time 0.029 seconds

A Design of AES-based WiBro Security Processor (AES 기반 와이브로 보안 프로세서 설계)

  • Kim, Jong-Hwan;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.71-80
    • /
    • 2007
  • This paper describes an efficient hardware design of WiBro security processor (WBSec) supporting for the security sub-layer of WiBro wireless internet system. The WBSec processor, which is based on AES (Advanced Encryption Standard) block cipher algorithm, performs data oncryption/decryption, authentication/integrity, and key encryption/decryption for packet data protection of wireless network. It carries out the modes of ECB, CTR, CBC, CCM and key wrap/unwrap with two AES cores working in parallel. In order to achieve an area-efficient implementation, two design techniques are considered; First, round transformation block within AES core is designed using a shared structure for encryption/decryption. Secondly, SubByte/InvSubByte blocks that require the largest hardware in AES core are implemented using field transformation technique. It results that the gate count of WBSec is reduced by about 25% compared with conventional LUT (Look-Up Table)-based design. The WBSec processor designed in Verilog-HDL has about 22,350 gates, and the estimated throughput is about 16-Mbps at key wrap mode and maximum 213-Mbps at CCM mode, thus it can be used for hardware design of WiBro security system.

A Fully Synthesizable Bluetooth Baseband Module for a System-on-a-Chip

  • Chun, Ik-Jae;Kim, Bo-Gwan;Park, In-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.328-336
    • /
    • 2003
  • Bluetooth is a specification for short-range wireless communication using the 2.4 GHz ISM band. It emphasizes low complexity, low power, and low cost. This paper describes an area-efficient digital baseband module for wireless technology. For area-efficiency, we carefully consider hardware and software partitioning. We implement complex control tasks of the Bluetooth baseband layer protocols in software running on an embedded microcontroller. Hardware-efficient functions, such as low-level bitstream link control; host controller interfaces (HCIs), such as universal asynchronous receiver transmitter (UART) and universal serial bus (USB)interfaces; and audio Codec are performed by dedicated hardware blocks. Furthermore, we eliminate FIFOs for data buffering between hardware functional units. The design is done using fully synthesizable Verilog HDL to enhance the portability between process technologies so that our module can be easily integrated as an intellectual property core no system-on-a-chip (SoC) ASICs. A field programmable gate array (FPGA) prototype of this module was tested for functional verification and realtime operation of file and bitstream transfers between PCs. The module was fabricated in a $0.25-{\mu}m$ CMOS technology, the core size of which was only 2.79 $mm{\times}2.80mm$.

  • PDF

Parallel Processing System with combined Architecture of SIMD with MIMD (SIMD와 MIMD가 결합된 구조를 갖는 병렬처리시스템)

  • Lee, Hyung;Choi, Sung-Hyuk;Kim, Jung-Bae;Park, Jong-Won
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.9-15
    • /
    • 2001
  • 영상에 관련된 다양한 응용 시스템들을 구현하는 많은 연구들이 진행되어 왔지만, 그러한 영상 관련 응용 시스템을 구현함에 있어서 처리속도의 저하로 인하여 많은 어려움을 겪고 있다. 이를 해결하기 위해 대두된 여러 방법들 중에서 최근 하드웨어 접근 방법에 고려한 많은 관심과 연구가 진행되고 있다. 본 논문은 영상을 실시간으로 처리하기 위하여 하드웨어 구조를 갖는 병렬처리시스템을 기술하며, 또한 병렬처리시스템을 얼굴 검색 시스템에 적용한 후 처리속도 및 실험 결과를 기술한다. 병렬처리시스템은 SIMD와 MIMD가 결합된 구조를 갖고 있기 때문에 다양한 영상 응용시스템에 대해서 융통성과 효율성을 제공하며, 144개의 처리기와 12개의 다중접근기억장치, 외부 메모리 모듈을 위한 인터페이스와 외부 프로세서 장치(i960Kx)와의 통신을 위한 인터페이스로 구성되어있다. 다중접근기억장치는 메모리 모듈선택회로, 데이터 라이팅회로, 그리고, 주소계산 및 라우팅회로로 구성되어 있다. 또한 얼굴 검색 시스템을 병렬처리 시스템에 적합한 병렬화를 제공하기 위해 메쉬방법을 이용하여 전처리, 정규화, 4개 특징값 추출, 그리고 분류화로 구성하였다. 병렬처리시스템은 하드웨어 모의실험 패키지인 CADENCE사의 Verilog-XL로 모의실험을 수행하여 기능과 성능을 검증하였다.

  • PDF

A Design of an OLED/TFT LCD controller based on Embedded System (임베디드 시스템 기반의 OLED/TFT LCD 컨트롤러 설계)

  • Cho, Young-Sung;Shin, Kyung-Wook;Lee, Yong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1030-1033
    • /
    • 2005
  • Today's most equipments that contain embedded system only support simple menus and background graphics. However, as the embedded system is applied for much more various fields and the user's needs for graphical interface become higher, the support for multimedia and moving pictures became an important criterion to evaluate the performance of a equipment. Because the present embedded system uses software to construct display environment, it is difficult to meet the bandwidth for multimedia contents and moving pictures. Using software for graphic also lowers the performance of the main function by overloading the processor. In this paper, we present an OLED/TFT-LCD controller suitable for embedded systems. The architecture we propose is described in HDL and the performance is evaluated in comparison with the existing embedded systems.

  • PDF

Design of CIC Interpolators with Improved Passband and Transition Region for Underwater Acousitc Communication (통과대역 및 전이영역 특성이 개선된 수중음파통신용 CIC 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.660-665
    • /
    • 2018
  • Research into underwater wireless networks that enable the monitoring and controlling of the ocean environments has been continuing for disaster prevention and military proposes, as well as for the exploitation of ocean resources throughout the world. A research group led by Hoseo university has been studying a distributed underwater monitoring and controlling network. In this study, we developed an interpolator for acoustic communication between an underwater base station controller and underwater base station, which is included in this network. The underwater acoustic communication provided by this network defines four links whose sampling rates are different. Low power consumption is one of the most important requirements. Therefore, we adopted CIC interpolators, which are known to act as filters with a low power consumption, and some CIC interpolators with an appropriate changing rate were selected depending on the link. However, these interpolators have a large passband drop and wide transition region. To solve these problems, we added a compensator and half-band filter. After verifying the algorithm by using Matlab, we designed and verified it with Verilog-HDL in a ModelSim environment.

An Implementation of 3D Graphic Accelerator for Phong Shading (퐁 음영법을 위한 3차원 그래픽 가속기의 구현)

  • Lee, Hyung;Park, Youn-Ok;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.526-534
    • /
    • 2000
  • There have been many researches on the 3D graphic accelerator for high speed by needs of CAD/CAM,3D modeling, virtual reality or medical image. In this paper, an SIMD processor architecture for 3D graphic accelerator is proposed in order to improve the processing time of the 3D graphics, and a parallel Phong shading algorithm is presented to estimate performance of the proposed architecture. The proposed SIMD processor architecture for 3D graphic accelerator consists of PCI local bus interface, 16 Processing Elements (PE's), and Park's multi-access memory system (NAMS) that has 17 memory modules. A serial algorithm for Phong shading is modified for the architecture and the main key is to divide a polygon into $4\times{4}$ squares. And, for processing a square, 4 PE's are regarded as a PE Grou logically. Since MAMS can support block access type with interval 1, it is possible that 4 PE Groups process a square at a time. In consequence, 16 pixels are processed simultaneously. The proposed SIMD processor architecture is simulated by CADENCE Verilog-XL that is a package for the hardware simulation. With the same simulated results as that of the serial algorithm, the speed enhancement by the parallel algorithm to the serial one is 5.68.

  • PDF

Design and Implementation of FMCW Radar Signal Processor for Drone Altitude Measurement (드론 고도 측정용 FMCW 레이다 신호처리 프로세서 설계 및 구현)

  • Lim, Euibeen;Jin, Sora;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • Accurate altimetry is required for the reliable flight control of drones or unmanned air vehicles (UAVs), and the radar altimeter is commonly used owing to its accuracy for the ground level. Due to the limitation for size, weight and power consumption, the frequency modulated continuous wave (FMCW) radar is appropriate for drone because it has lower complexity than that of pulse Doppler (PD) radar. Especially, fast-ramp FMCW radar, which transmits linear FM signal during very short period, is generally utilized, because it is robust for the ego-motion of drone. Therefore, we present the design and implementation results of the radar signal processor (RSP) for fast-ramp FMCW radar system. The proposed RSP was designed with Verilog-HDL and implemented with Altera Cyclone-IV FPGA device. Implementation results show that the proposed RSP includes 27,523 logic elements, 15,798 registers and memory of 138Kbits and can measure the altimeter at the rate of 100Hz with the operating frequency of 50MHz.

VLSI Design of DWT-based Image Processor for Real-Time Image Compression and Reconstruction System (실시간 영상압축과 복원시스템을 위한 DWT기반의 영상처리 프로세서의 VLSI 설계)

  • Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.102-110
    • /
    • 2004
  • In this paper, we propose a VLSI structure of real-time image compression and reconstruction processor using 2-D discrete wavelet transform and implement into a hardware which use minimal hardware resource using ASIC library. In the implemented hardware, Data path part consists of the DWT kernel for the wavelet transform and inverse transform, quantizer/dequantizer, the huffman encoder/huffman decoder, the adder/buffer for the inverse wavelet transform, and the interface modules for input/output. Control part consists of the programming register, the controller which decodes the instructions and generates the control signals, and the status register for indicating the internal state into the external of circuit. According to the programming condition, the designed circuit has the various selective output formats which are wavelet coefficient, quantization coefficient or index, and Huffman code in image compression mode, and Huffman decoding result, reconstructed quantization coefficient, and reconstructed wavelet coefficient in image reconstructed mode. The programming register has 16 stages and one instruction can be used for a horizontal(or vertical) filtering in a level. Since each register automatically operated in the right order, 4-level discrete wavelet transform can be executed by a programming. We synthesized the designed circuit with synthesis library of Hynix 0.35um CMOS fabrication using the synthesis tool, Synopsys and extracted the gate-level netlist. From the netlist, timing information was extracted using Vela tool. We executed the timing simulation with the extracted netlist and timing information using NC-Verilog tool. Also PNR and layout process was executed using Apollo tool. The Implemented hardware has about 50,000 gate sizes and stably operates in 80MHz clock frequency.

Design and Implementation of 8b/10b Encoder/Decoder for Serial ATA (직렬 ATA용 8b/10b 인코더와 디코더 설계 및 구현)

  • Heo Jung-Hwa;Park Nho-Kyung;Park Sang-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.93-98
    • /
    • 2004
  • Serial ATA interface Is inexpensive comparatively and performance is superior. So it is suitable technology in demand that now require data transmission and throughput of high speed. This paper describes a design and implementation of Serial ATA Link layer about error detection and 8b/10b encoder/decoder for DC balance in frequency 150MHz. The 8b/10b Encoder is partitioned into a 5b/6b plus a 3b/4b coder. The logical model of the block is described by using Verilog HDL at register transistor level and the verified HDL is synthesized using standard cell libraries. And it is fabricated with $0.35{\mu}m$ Standard CMOS Cell library and the chip size is about $1500{\mu}m\;*\;1500{\mu}m$. The function of this chip has been verified and tested using testboard with FPGA equipment and IDEC ATS2 test equipment. It is used to frequency of 100MHz in verification processes and supply voltage 3.3V. The result of testing is well on the system clock 100MHz. The designed and verified each blocks may be used IP in the field of high speed serial data communication.

Design of an Improved Anti-Collision Unit for an RFID Reader System Based on Gen2 (Gen2 리더 시스템의 개선된 충돌방지 유닛 설계)

  • Sim, Jae-Hee;Lee, Yong-Joo;Lee, Yong-Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.177-183
    • /
    • 2009
  • In this paper, we propose an improved anti-collision algorithm. We have designed an anti-collision unit using this algorithm for the 18000-6 Type C Class 1 Generation 2 standard (Gen2). The Gen2 standard uses a Q-algorithm for incremental method on the Dynamic Slot-Aloha algorithm. It has basically enhanced performance over the Slot-Aloha algorithm. Unfortunately, there are several non-clarified parts: initial $Q_{fp}$ value, weighted C, and the ending point of the algorithm. If an incorrect value is selected, it causes degradation in performance. Thus we propose an improved anti-collision algorithm by clearly defining the vague parts of the existing algorithm. Simulation results showed an improved performance of up to 34.8% using an optimized value of C and the initial $Q_{fp}$ value. With the ending condition, performance is 34.7%. The anti-collision unit is designed using the Verilog HDL. The module was synthesized using Synopsys' Design Compiler and the TSMC $0.2{\mu}m$ standard cell library. The synthesized result yielded 3,847 gates, and was guaranteed under the proposed working frequency of 19.2MHz.