This paper implements mobile Worldwide Interoperability for Microwave Access (WiMAX) receiver using Software Defined Radio (SDR) technology. SDR system is difficult to implement on the mobile handset because of restrictions that are computing power and under space constraints. The implemented receiver processes mobile WiMAX software modem on Open Multimedia Application Platform (OMAP) System on Chip (SoC) and Field Programmable Gate Array (FPGA). OMAP SoC is composed of ARM processor and Digital Signal Processor (DSP). ARM processor supports Single Instruction Multiple Data (SIMD) instruction which could operate on a vector of data with a single instruction and DSP is powerful image and video accelerators. For this reason, we suggest the possibility of SDR technology in the mobile handset. In order to verify the performance of the mobile WiMAX receiver, we measure the software modem runtime respectively. The experimental results show that the proposed receiver is able to do real-time signal processing.
하나의 제품에 다양한 기능들이 복합적으로 통합하는 단일칩시스템 (System-on-a-Chip, SoC)의 설계 요구가 증가하는 반면, 시장이 요구하는 적기 출하 시점은 점점 짧아지고 있다. 따라서 이러한 요구를 만족시키기 위해서 소프트웨어와 하드웨어를 통합하여 검증하는 것이 무엇보다 중요하다. 이러한 하드웨어-소프트웨어 통합 검증을 조기에 수행하는 방법으로 IP(intellectual property) 재사용을 통한 가상 플랫폼 기반 설계 방법이 널리 연구되고 있다. 본 논문에서는 기존 ARM프로세서 기반 S3C2440A 시스템을 가상 플랫폼을 이용하여 재설계하고, JPEG 디코더를 S3C2440A 가상 플랫폼에 구현하여 성능을 평가하였다. 또한, ARM 프로세서 기반 인라인 어셈블리어를 이용하여 JPEG 디코더를 최적화하는 기법을 소개하였고, 이를 가상 플랫폼에 구현하여 성능 향상을 검증하였다. 이러한 가상 플랫폼 기반 설계를 통해 하드웨어 및 소프트웨어의 통합 검증이 가능하고, 시장 적기 출하(Time-to-Market) 요구에 신속히 대처할 수 있다.
This paper presents CARMA (Cycle-Accurate Retargetable Micro-Architecture) as efficient framework for SoC-centric pipelined instruction-set architectures. It is based on ADL (Architecture Description Language) and provides more concise and manifest semantics to describe behavior of instruction set by mixing efficiency of instruction-set simulators and flexibility of RTL simulators. It exploits new timing model method based on process scheduling so it can support general timing model with cycle accuracy for large-scaled architectures usually used in SoC multimedia chip-set. According to experiments, the proposed framework was shown to be 5.5 times faster than HDL and 2.5 times faster than System-C in simulation speed so it is applicable for complex instruction-set pipelined architectures.
최근 IP 코어를 기반으로 하는 시스템 온 칩은 칩 설계 방식의 새로운 방향을 제시하면서 시스템 온 칩의 테스트가 중요한 문제로 대두되고 있다. 시스템 온 칩을 테스트하는 문제가 전체 코어 기반 설계에 병목 현상으로 작용하지 않게 하기 위해서는 효과적인 테스트 구조와 테스트 방법에 대한 연구가 필수적이다. 본 논문에서는 IEEE 1149.1 경계 주사 구조에 기반을 둔 시스템 온 칩 테스트 구조와 테스트 제어 메커니즘을 제안한다. 본 논문에서 제안하는 테스트 제어 접근 구조는 IEEE P1500에서 제안하는 내장된 코어 테스트표준에 상응하면서도 TAPed core와 Wrapped core 모두에 대해서 테스트 제어가 가능하다. 또한 제안하는 테스트 구조는 시스템 온 칩의 입·출력에 존재하는 TCK, TMS, TDI, TDO에 의해서 완전 제어 가능하므로 상위 수준의 테스트 구조와 계층적 구조를 유지할 수 있다.
본 논문에서는 MPEG-2, MPEG-4, H.264/AVC 및 VC-1 코덱 표준을 동시에 지원하는 멀티 포맷 비디오 복호기 (MFD)의 설계 방법을 제안한다. 제안하는 MFD는 디지털-TV SoC 에 필요한 고사양의 고화질급 비디오 처리를 목표로 하였다. 리스크 프로세서, 온칩 메모리 및 주변 회로 등의 크기가 큰 공용 자원들을 공유하여 크기를 최소화 하였다. 또한, 코덱 별로 추가 및 제거가 용이한 분리 가능한 구조를 사용하였다. 이러한 구조는 이미 설계되고 검증된 코덱의 안정성의 유지를 용이하게 해준다. 설계된 MFD는 65nm 공정에서 크기가 약 2.4M 게이트 이며, 동작속도는 225MHz이다. 본 논문에서 제안한 MFD는 현재까지 알려진 MFD 중 최고 성능인 고화질급(1080p@30fps) 이상의 비디오 디코딩을 지원하며, 가장 많은 종류의 비디오 코덱 표준을 지원한다.
본 논문에서는 H.264 및 AVC 디코더를 ARM-Excalibur를 이용하여 하드웨어(HW:Hardware)와 소프트웨어 (SW:Software)로 병행설계(co-design)하는 방법에 대해서 제안한다. 내장형 프로세서, 메모리, 주변장치 및 논리 회로들을 하나의 칩으로 집적한 SoC(System On-a-Chip)를 하드웨어와 소프트웨어로 분할하여 병행 설계(co-design)하는 방식이 새로운 설계 방법으로 대두되고 있다. 최적화된 분할 방법을 찾는 것이 매우 어렵기 때문에 설계 초기단계에서 빠르게 검증할 필요가 있는데 본 논문에서는 H.264 및 AVC 디코더를 알테라사의 ARM-Excalibur라는 칩을 이용하여 효율적으로 병행 설계하였으며 시스템의 동작속도가 크게 향상되는 것을 확인할 수 있었다.
LTE 기반의 펨토셀 활용과 개발에 대한 요구는 LTE로의 이동통신 서비스가 본격화되면서, 최근 몇 년간 중요한 이슈로 자리매김하고 있다. 기지국 장비의 재설치와 주파수의 효율적인 활용 측면에서 펨토셀 기지국은 이동통신 서비스 사업자와 가입자에게 동시에 중요한 역할을 수행할 것으로 보인다. 이러한 펨토셀 기지국의 필요성을 충족시켜 주기 위해서는 펨토셀 기지국의 형상과 기능에서 그 본래의 요구를 만족시켜 주는 것이 중요하다. 무엇보다도, LTE 기반의 펨토셀 기지국은 기기의 간편한 설치와 매크로셀 기지국의 오프로딩이라는 역할을 충실히 수행할 수 있는지가 핵심적 평가 요소가 될 것이다. 이를 위해서는 펨토셀 기지국의 핵심 부품인 베이스밴드 SoC(System on a Chip) 성능 및 기능이 펨토셀 기지국 전체의 경쟁력을 판단하는 데 중요한 척도 중에 하나가 될 것이다. 본고에서는 이러한 관점에서 ETRI가 개발한 LTE 펨토셀 기지국의 베이스밴드 SoC를 중심으로 그 형상과 개발 과정을 기술하고 해외 업체들의 베이스밴드 칩셋의 형상과 개발상황에 대해서 자세히 기술하기로 한다.
모바일 장치와 IoT의 보안 프로토콜 구현에 적합한 경량 보안 SoC 설계에 대해 기술한다. Cortex-M0을 CPU로 사용하는 보안 SoC에는 타원곡선 암호 (elliptic curve cryptography) 코어, SHA3 해시 코어, ARIA-AES 블록 암호 코어 및 무작위 난수 생성기 (TRNG) 코어 등의 하드웨어 크립토 엔진들이 내장되어 있다. 핵심 연산장치인 ECC 코어는 SEC2에 정의된 20개의 소수체와 이진체 타원곡선을 지원하며, 부분곱 생성 및 가산 연산과 모듈러 축약 연산이 서브 파이프라인 방식으로 동작하는 워드 기반 몽고메리 곱셈기를 기반으로 설계되었다. 보안 SoC를 Cyclone-5 FPGA 디바이스에 구현하고 타원곡선 디지털 서명 프로토콜의 H/W-S/W 통합 검증을 하였다. 65-nm CMOS 셀 라이브러리로 합성된 보안 SoC는 193,312 등가 게이트와 84 kbyte의 메모리로 구현되었다.
FPCA is the necessary device to design of hardware at present, it is researched on many ways of applying to design caused by expansion of capacity in recent years. One of these applying ways is SoC (System on a Chip) that is proposed for realizing the basic function of a system. For realizing SoC efficiently, IP (Intellectual property) is very important and developed for re-use of hardware. A MPU for built-in exists as an IP. But almost of MPUs at present as an IPs are lengthy and large-scale for using embedded-application. Furthermore, the function of executing specific treatment critically is required to embedded MPU. We propose a flexible and small scale MPU and its design method.
최근 운전자의 편의와 안전을 위해 전방 차량 추돌 감지 시스템(Front Collision Warning System : FCWS)과 같은 다양한 운전자 보조 시스템(Advanced Driver Assistance System : ADAS)이 개발되고 있다. FCWS는 주행 중 실시간으로 동작해야 하기 때문에 높은 처리속도를 필요로 한다. 또한 자동차의 전장화에 따라 FCWS를 차량용 임베디드 시스템에서 동작시키기 위해 저전력 시스템이 필요하다. 본 논문에서는 FCWS를 CPU-FPGA 구조에서 실시간 처리가 가능하도록 구현하였다. 차선 검출은 Inverse Transform Perspective(IPM)와 슬라이딩 윈도우 방식을 이용하여 CPU에서도 빠른 속도로 동작할 수 있도록 하였다. 차량검출은 높은 인식률을 가지는 Convolutional Neural Network(CNN)을 이용하였고, FPGA에서 병렬처리로 가속하였다. 제안하는 구조는 저전력으로 동작하는 ARM-Core A9과 FPGA를 내장한 Intel FPGA Cyclone V SoC(System on Chip)에서 검증하였다. HD해상도에서 FCWS는 44FPS로 실시간으로 동작하며, 고성능 PC 환경보다 처리속도 대비 에너지 효율이 약 3.33배 높은 것을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.