• Title/Summary/Keyword: System-on-a-Chip (SoC)

Search Result 287, Processing Time 0.029 seconds

A New Multi-site Test for System-on-Chip Using Multi-site Star Test Architecture

  • Han, Dongkwan;Lee, Yong;Kang, Sungho
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.293-300
    • /
    • 2014
  • As the system-on-chip (SoC) design becomes more complex, the test costs are increasing. One of the main obstacles of a test cost reduction is the limited number of test channels of the ATE while the number of pins in the design increases. To overcome this problem, a new test architecture using a channel sharing compliant with IEEE Standard 1149.1 and 1500 is proposed. It can significantly reduce the pin count for testing a SoC design. The test input data is transmitted using a test access mechanism composed of only input pins. A single test data output pin is used to measure the sink values. The experimental results show that the proposed architecture not only increases the number of sites to be tested simultaneously, but also reduces the test time. In addition, the yield loss owing to the proven contact problems can be reduced. Using the new architecture, it is possible to achieve a large test time and cost reduction for complex SoC designs with negligible design and test overheads.

Development of A Single-Chip Active Noise Controller And Its Evaluation System (단일칩 능동 소음 제어기 및 평가 시스템 개발)

  • Chung, Ikjoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.241-246
    • /
    • 2021
  • In this paper, we developed the evaluation system for the active noise control so that the algorithms can be easily evaluated in real-time on the system. We implemented the active noise controller based on a single-chip with only additional op-amps for signal conditioning because the TMS320C280049 MCU includes almost all necessary peripherals for the active noise controller. Due to the difficulty in testing algorithms on embedded-type hardware unlike in computer simulation, we also developed GUI-based evaluation software which makes it simple to test algorithms on the hardware. Using the GUI software, we can optimize the parameters of the algorithms with ease in a specific noise environment because the parameters can be adjusted in real-time when the algorithm is running on the hardware.

A New DIT Radix-4 FFT Structure and Implementation (새로운 DIT Radix-4 FFT 구조 및 구현)

  • Jang, Young-Beom;Lee, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.683-690
    • /
    • 2015
  • Two basic FFT(Fast Fourier Transform) algorithms are the DIT(Decimation-In-Time) and the DIF (Decimation-In-Frequency). In spite of the advantage of the DIT algorithm is to generate a sequential output, various structures have not been made. In this paper, a new DIT Radix-4 FFT butterfly structure are proposed and implemented using Verilog coding. Through synthesis, it is shown that the 64-point FFT is implemented by 6.78 million gates. Since the proposed FFT structure has the advantage of a sequential output, it can be used in OFDM communication SoC(System on a Chip) which need a high speed FFT output.

An On-Chip Test Clock Control Scheme for Circuit Aging Monitoring

  • Yi, Hyunbean
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. Aging can be monitored by performing a delay test at faster clocks than functional clock in field and checking the current delay state from the test clock frequencies at which the delay test is passed or failed. In this paper, we focus on test clock control scheme for a system-on-chip (SoC) with multiple clock domains. We describe limitations of existing at-speed test clock control methods and present an on-chip faster-than-at-speed test clock control scheme for intra/inter-clock domain test. Experimental results show our simulation results and area analysis. With a simple control scheme, with low area overhead, and without any modification of scan architecture, the proposed method enables faster-than-at-speed test of SoCs with multiple clock domains.

Modeling & Analysis of the System Bus on the SoC Platform (SoC 플랫폼에서 시스템 버스의 모델링 및 해석)

  • Cho Young-shin;Lee Je-hoon;Cho Kyoung-rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.35-44
    • /
    • 2005
  • SoC(systnn-on-a-chip) requires high bandwidth system bus for performing multiple functions. Performance of the system is affected by bandwidth of the system bus. In this paper, for efficient management of the bus resource on a SoC platform, we present a latency model of the shared bus organized by multiple layers. Using the latency model, we can analyze latencies of the shared bus on a SoC. Moreover we evaluate a throughput of the bus and compare with needed throughput of the SoC platform including IPs such as MPEG or USB 2.0. And we can use the results as a criteria to find out an optimal bus architecture for the specific SoC design. For verifying accuracy of the proposed model, we compared the latencies with the simulation result from MaxSim tools. As the result of simulation, the accuracy of the IS model for a single layer and multiple layer are over $96\%\;and\;85\%$ respectively.

Reduced Pin Count Test Techniques using IEEE Std. 1149.7 (IEEE 1149.7 표준 테스트 인터페이스를 사용한 핀 수 절감 테스트 기술)

  • Lim, Myunghoon;Kim, Dooyoung;Mun, Changmin;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.60-67
    • /
    • 2013
  • Test cost reduction is necessary to test a complex System-on-a-Chip(SoC) which adopts various Intellectual Properties (IP). In this paper, test architecture with low pin count which is able to IP-based SoC test, using IEEE Std. 1149.7 and IEEE Std. 1500, is proposed. IEEE Std. 1500 provides independent access mechanism for each IP in IP-based SoC test. In this paper, just two test pins are required by composing that these independent access mechanism can be controlled by IEEE Std. 1149.7. The number of Chips which are tested at the same time is increased by reducing required test pin count at wafer and package level test, and consequently the overall manufacturing test cost will be reduced significantly.

A Study for photonic-sensor drive based on SOPC (SOPC기반 광-센서 구동에 관한 연구)

  • Son, Hong-Bum;Park, Seong-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.747-748
    • /
    • 2006
  • In this paper, we describe photonic sensor interface and driver program based on SOPC(System on a programmable chip) platform. This platform uses device that has ARM922T processor and APEX FPGA area on a chip. As for driver program development, three different methods are tried such as simple firmware, real-time OS based program and embedded Linux based program, and results are compared for SoC implementation.

  • PDF

A Study on the Signal Process of Cutting Forces in Turning and its Application (2nd Report) -Automatic Monitor of Chip Rorms using Cutting Forces- (선삭가공에 있어서 선삭저항의 신호처리와 그 응용에 관한 연구(II))

  • Kim, Do-Yeong;Yun, Eul-Jae;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 1990
  • In automatic metal cuttings, the chip control is one of the serious problems. So the automatic detection of chip forms is essential to the chip control in automatic metal cuttings. Cutting experiments were carried out under the variety of cutting conditions (cutting speed, feed, depth of cut and tool geometry) and with workpiece made of steel (S45C), and cutting forces were measured in-processing by using a piezoelectric type Tool Dynamometer. In this report, the frequency analysis of dynamic components, the upper frequency distributions, the ratio of RMS values, the numbers of null point and the probability density were calculated from the dynamic componeents of cutting forces filtered through various band pass filters. Experimental results showed that computer chip form monitoring system based on the cutting forces was designed and simulated and that 6 type of chip forms could be detected while in-process machining.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

  • Seung-Ho Lim;Hyeok-Jin Lim;Seong-Cheon Park
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.116-130
    • /
    • 2024
  • In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual devices; thus, individual devices should protect data by performing secure operations on the data transmitted and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is required for designing and implementing embedded system-on-chip (SoC) modules through overhead and performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which enables the execution and verification of various aspects of the secure key generation module at the electronic system level and analyzes the system-level execution time, memory footprint, and performance, such as randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each module.