• Title/Summary/Keyword: System-on-Chip (SoC)

Search Result 329, Processing Time 0.02 seconds

A Study on SoC Platform Design Supporting Dynamic Cooperation between Hardware and Software Modules (하드웨어 및 소프트웨어 모듈간의 동적 협업을 지원하는 SoC 플랫폼 설계에 관한 연구)

  • Lee, Dong-Geon;Kim, Young-Mann;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1446-1459
    • /
    • 2007
  • This paper presents and analyzes a novel technique that makes it possible to improve the performance of low-end embedded systems through SoC(System-on-a-Chip) platform supporting dynamic cooperation between hardware and software modules. Traditional embedded systems with limited hardware resources have the poor capability of carrying out multi-tasking jobs including complex calculations. The proposed SoC platform, which provides dynamic cooperation between hardware and software modules, decomposes a single specific system into tasks for given system requirements. Additionally, we also propose a technique for efficient communication and synchronization between hardware and software tasks in cooperation with each other. Several experiments are conducted to illustrate the application and efficiency of the proposed SoC platform. They show that the proposed SoC platform outperforms the traditional embedded system, where only software tasks run, as the number of memory access is increased and the system become more complex.

  • PDF

FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation (정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현)

  • Hong, Dae-Ki;Kim, Yong-Seong;Kim, Sun-Hee;Cho, Jin-Woong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1102-1110
    • /
    • 2007
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the CAMB (Constant-Amplitude Multi-code Biorthogonal) modulation, and implement the SoC (System on Chip). The ASIC (Application Specific Integrated Circuit) chip is be implemented through targeting and board test. This 12Mbps modem SoC includes the ARM (Advanced RISC Machine)7TDMI, 64Kbyte SRAM(Static Random Access Memory) and ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter) for flexible applications. Additionally, the modem SoC can support the variable communication interfaces such as the 16-bits PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, and 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter).

Effective SoC Architecture of a VDP for full HD TVs (Full HD TV를 위한 효율적인 VDP SoC 구조)

  • Kim, Ji-Hoon;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This Paper proposes an effective SoC hardware architecture implementing a VDP for Full HD TVs. The proposed architecture makes real time video processing possible with supporting efficient bus architecture and flexible interface. Video IP cores in the VDP are designed to provide a high quality of improved image enhancement function. The Avalon interface is adopted to guarantee real-time capability to IPs as well as SoC integration. This leads to reduced design time and also enhanced designer's convenience due to the easiness in IP addition, deletion, and revision for IP verification and SoC integration. The embedded software makes it possible to implement flexible real-time system by controlling setting parameter details and data transmitting schemes in real-time. The proposed VDP SoC design is implemented on Cyclon III SoPC platform. The experimental results show that our proposed architecture of the VDP SoC successfully provides required quality of Video image by converting SD level input to Full HD level image.

  • PDF

High Performance SoC On-chip-bus Architecture with Multiple Channels and Simultaneous Routing (다중 채널과 동시 라우팅 기능을 갖는 고성능 SoC 온 칩 버스 구조)

  • Lee, Sang-Hun;Lee, Chan-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.24-31
    • /
    • 2007
  • Up to date, a lot of bus protocol and bus architecture are released though most of them are based on the shared bus architecture and inherit the limitation of performance. SNP (SoC Network Protocol), and hence, SNA (SoC Network Architecture) which are high performance on-chip-bus protocol and architecture, respectively, have been proposed to solve the problems of the conventional shared bus. We refine the SNA specification and improve the performance and functionality. The performance of the SNA is improved by supporting simultaneous routing for bus request of multiple masters. The internal routing logic is also improved so that the gate count is decreased. The proposed SNA employs XSNP (extended SNP) that supports almost perfect compatibility with AMBA AHB protocol without performance degradation. The hardware complexity of the improved SNA is not increased much by optimizing the current routing logic. The improved SNA works for IPs with the original SNP at its best performance. In addition, it can also replace the AMBA AHB or interconnect matrix of a system, and it guarantees simultaneous multiple channels. That is, the existing AMBA system can show much improved performance by replacing the AHB or the interconnect matrix with the SNA. Thanks to the small number of interconnection wires, the SNA can be used for the off-chip bus system, too. We verify the performance and function of the proposed SNA and XSNP simulation and emulation.

IEEE 1500 Wrapper and Test Control for Low-Cost SoC Test (저비용 SoC 테스트를 위한 IEEE 1500 래퍼 및 테스트 제어)

  • Yi, Hyun-Bean;Kim, Jin-Kyu;Jung, Tae-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.65-73
    • /
    • 2007
  • This paper introduces design-for-test (DFT) techniques for low-cost system-on-chip (SoC) test. We present a Scan-Test method that controls IEEE 1500 wrapper thorough IEEE 1149.1 SoC TAP (Test Access Port) and design an at-speed test clock generator for delay fault test. Test cost can be reduced by using small number of test interface pins and on-chip test clock generator because we can use low-price automated test equipments (ATE). Experimental results evaluate the efficiency of the proposed method and show that the delay fault test of different cores running at different clocks test can be simultaneously achieved.

Test Scheduling Algorithm of System-on-a-Chip Using Extended Tree Growing Graph (확장 나무성장 그래프를 이용한 시스템 온 칩의 테스트 스케줄링 알고리듬)

  • 박진성;이재민
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.93-100
    • /
    • 2004
  • Test scheduling of SoC (System-on-a-chip) is very important because it is one of the prime methods to minimize the testing time under limited power consumption of SoC. In this paper, a heuristic algorithm, in which test resources are selected for groups and arranged based on the size of product of power dissipation and test time together with total power consumption in core-based SoC is proposed. We select test resource groups which has maximum power consumption but does not exceed the constrained power consumption and make the testing time slot of resources in the test resource group to be aligned at the initial position in test space to minimize the idling test time of test resources. The efficiency of proposed algorithm is confirmed by experiment using ITC02 benchmarks.

Test Data Compression for SoC Testing (SoC 테스트를 위한 테스트 데이터 압축)

  • Kim Yun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.515-520
    • /
    • 2004
  • Core-based system-on-a-chip (SoC) designs present a number of test challenges. Two major problems that are becoming increasingly important are long application time during manufacturing test and high volume of test data. Highly efficient compression techniques have been proposed to reduce storage and application time for high volume data by exploiting the repetitive nature of test vectors. This paper proposes a new test data compression technique for SoC testing. In the proposed technique, compression is achieved by partitioning the test vector set and removing repeating segment. This process has $O(n^{-2})$ time complexity for compression with a simple hardware decoding circuitry. It is shown that the efficiency of the proposed compression technique is comparable with sophisticated software compression techniques with the advantage of easy and fast decoding.

  • PDF

SoC IP design for Perpendicular Coordinate Robot & Image Capture (직각좌표로봇 및 영상캡쳐를 위한 SoC IP 설계구현)

  • Park Jong-Seong;Moon Cheol-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.403-406
    • /
    • 2004
  • This paper describes an IP design and implementation of a complicated hardware to System on a Chip(SoC) to simplify the complicated system. As using SoC, hardware and software can be designed and verified both. This paper describes an image capturing IP and a perpendcular coordinate robot IP that can move on x, y coordinates. 240$\ast$320 TFT-LCD is used to display images.

  • PDF

Efficient Test Data Compression and Low Power Scan Testing for System-On-a-Chip(SOC) (SOC(System-On-a-Chip)에 있어서 효율적인 테스트 데이터 압축 및 저전력 스캔 테스트)

  • Park Byoung-Soo;Jung Jun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.229-236
    • /
    • 2005
  • Testing time and power consumption during testing System-On-a-Chip (SOC) are becoming increasingly important as the IP core increases in a SOC. We present a new algorithm to reduce the scan-in power and test data volume using the modified scan latch reordering. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power and high compression. Experimental results for ISCAS 89 benchmark circuits show that reduced test data and low power scan testing can be achieved in all cases.

  • PDF

Efficient AMBA Based System-on-a-chip Core Test With IEEE 1500 Wrapper (IEEE 1500 래퍼를 이용한 효과적인 AMBA 기반 시스템-온-칩 코아 테스트)

  • Yi, Hyun-Bean;Han, Ju-Hee;Kim, Byeong-Jin;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • This paper introduces an embedded core test wrapper for AMBA based System-on-Chip(SoC) test. The proposed test wrapper is compatible with IEEE 1500 and can be controlled by ARM Test Interface Controller(TIC). We use IEEE 1500 wrapper boundary registers as temporal registers to load test results as well as test patterns and apply a modified scan test procedure. Test time is reduced by simultaneously performing primary input insertion and primary output observation as well as scan-in and scan-out.