• Title/Summary/Keyword: System matrix

Search Result 4,710, Processing Time 0.031 seconds

Probe and Matrix Diffusion of Polystyrene Particle and Labeled Polyallylamine Hydrochlorate

  • Choi, Young-Wook;Sohn, Dae-Won
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.205-205
    • /
    • 2006
  • Adsorption behaviors of positively charged matrix (PAH) onto negatively charged probe (sulfate PS particle) were investigated using DLS (dynamic light scattering) and FPR (fluorescence photobleaching recovery) as view points of matrix and salt concentration. The system experienced sharp decrease of diffusion (flocculation) at dilute condition while the system underwent gradual decrease of diffusion above semi-dilute concentration. With FPR and viscometry experiments, we revealed the probe behaviors in polyelectrolyte solution were strongly affected by the coil overlap concentration (0.5 g/L PAH concentration).

  • PDF

Symbolic modeling of a 4-bar link flexible manipulator (4절기구를 가진 유연한 조작기의 기호적 모델링)

  • 이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.559-564
    • /
    • 1993
  • Nonlinear equation of motion of the flexible manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equations of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to high order. A manipulator with a flexible 4 bar link mechanism is a constrained system whose equations are sensitive to numerical integration error. This constrained system is solved using the null space matrix of the constraint Jacobian matrix. Singular value decomposition is a stable algorithm to find the null space matrix.

  • PDF

Design of PD Observers in Descriptor Linear Systems

  • Wu, Ai-Guo;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2007
  • A class of new observers in descriptor linear systems, proportional-derivative(PD) observers, are proposed. A parametric design approach for such observers is proposed based on a complete parametric solution to the generalized Sylvester matrix equation. The approach provides complete parameterizations for all the observer gains, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes elimination of impulsive behaviors, and guarantees the regularity of the observer system.

Geometrical Construction of the S Matrix and Multichannel Quantum Defect Theory for the two Open and One Closed Channel System

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.971-984
    • /
    • 2002
  • The multichannel quantum defect theory (MQDT) is reformulated into the form of the configuration mixing (CM) method using the geometrical construction of the S matrix developed for the system involving two open and one closed channels. The reformulation is done by the phase renormalization method of Giusti-Suzor and Fano. The rather unconventional short-range reactance matrix K whose diagonal elements are not zero is obtained though the Lu-Fano plot becomes symmetrical. The reformulation of MQDT yields the partial cross section formulas analogous to Fano's resonance formula, which has not easily been available in other's work.

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

Linearity and Nonlinearity of Rotor System Analysis (로터 시스템 회전운동 선형 및 비선형성)

  • Yun, Seong-Ho;Ren, Li-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.190-196
    • /
    • 2008
  • The dynamical rotor system is investigated through the derivation and formulations of the dynamic equation of the rotating system in terms of both inertial and fixed frame of the system as well as quaternion. The investigation is aimed at analyzing the dynamical rotating system precession speed. The resulting equations of motion consist of the consistent mass matrix and gyroscopic matrix. The formulation shows its features and difference between its linearity and nonlinearity.

  • PDF

Dynamic Power Management Structure for Energy Harvesting Pervasive Computing System

  • Bae, Hyeoungho;Kim, Dong-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a novel power management structure for an energy harvesting pervasive system is proposed. The system considers the power state of each subsystem to assign proper power sources. The switch matrix structure utilizes each power source to reduce the peak current of the battery. The power management structure can be interfaced to an embedded system power supply without significant design change.

  • PDF

An Improvement of Implementation Method for Multi-Layer AHB BusMatrix (ML-AHB 버스 매트릭스 구현 방법의 개선)

  • Hwang Soo-Yun;Jhang Kyoung-Sun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.629-638
    • /
    • 2005
  • In the System on a Chip design, the on chip bus is one of the critical factors that decides the overall system performance. Especially, in the case or reusing the IPs such as processors, DSPs and multimedia IPs that requires higher bandwidth, the bandwidth problems of on chip bus are getting more serious. Recently ARM proposes the Multi-Layer AHB BusMatrix that is a highly efficient on chip bus to solve the bandwidth problems. The Multi-Layer AHB BusMatrix allows parallel access paths between multiple masters and slaves in a system. This is achieved by using a more complex interconnection matrix and gives the benefit of increased overall bus bandwidth, and a more flexible system architecture. However, there is one clock cycle delay for each master in existing Multi-Layer AHB BusMatrix whenever the master starts new transactions or changes the slave layers because of the Input Stage and arbitration logic realized with Moore type. In this paper, we improved the existing Multi-Layer AHB BusMatrix architecture to solve the one clock cycle delay problems and to reduce the area overhead of the Input Stage. With the elimination of the Input Stage and some restrictions on the arbitration scheme, we tan take away the one clock cycle delay and reduce the area overhead. Experimental results show that the end time of total bus transaction and the average latency time of improved Multi-Layer AHB BusMatrix are improved by $20\%\;and\;24\%$ respectively. in ease of executing a number of transactions by 4-beat incrementing burst type. Besides the total area and the clock period are reduced by $22\%\;and\;29\%$ respectively, compared with existing Multi-layer AHB BusMatrix.

Recommender System based on Product Taxonomy and User's Tendency (상품구조 및 사용자 경향성에 기반한 추천 시스템)

  • Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • In this study, a novel and flexible recommender system was developed, based on product taxonomy and usage patterns of users. The proposed system consists of the following four steps : (i) estimation of the product-preference matrix, (ii) construction of the product-preference matrix, (iii) estimation of the popularity and similarity levels for sought-after products, and (iv) recommendation of a products for the user. The product-preference matrix for each user is estimated through a linear combination of clicks, basket placements, and purchase statuses. Then the preference matrix of a particular genre is constructed by computing the ratios of the number of clicks, basket placements, and purchases of a product with respect to the total. The popularity and similarity levels of a user's clicked product are estimated with an entropy index. Based on this information, collaborative and content-based filtering is used to recommend a product to the user. To assess the effectiveness of the proposed approach, an empirical study was conducted by constructing an experimental e-commerce site. Our results clearly showed that the proposed hybrid method is superior to conventional methods.

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF