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The multichannel quantum defeet theony (MQDT) 1s reformulated mto the form ol the conliguration mixing
(CM) method using the geometrical construction of the .§ matrix developed For the system myvolving two open
and one closed channels. The reformulation 1s done by the phase renommalization method ol Giusti-Suzor and
Fano. The rather unconventional short-range reactance matrix & whose diagonal clements are nol zcro 1s
obtained though the Lu-Fano plot becomes symmetrical. The reformulation of MQDT viclds the partial cross
seetion formulas analogous o Tane's resonanee formula, which has not casily been available in other's work.
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Introduction

I recently made a geometrical construction of (he § matrix
for the system involving two continua and ong discrete state'~
in the conlext of the configuration-mixing (CM) method of
Fano.® In this paper. T will apply (his newly developed
geometrical method (o (he reformulation of (he multichanncl
quantum defect theory (MQDT) into the form of (he CM
onc [or the system involving two open and one closed channels,
The configuration-mixing method and the nudtichannel quantum
defeet theory arc (wo widely used resonance (heorics and
have their own advantages and disadvantages. The configu-
ration-mixing method assumes the presence of discrete states
from the outsct. which has an advantage of treating (the back-
ground and resonance contributions dircetly but making it
impossible to treat the whole spectrum including bound states
and continua in a unificd manncr. Multichannel quantum
defect theory overcomes (his limitation by not cxplicitly
assuming the presence of discrele stales. However. as
resonances arc handled indirectly. it is not obvious how (o
identifv (he resonance (erms from (he background oncs or (o
show (he resonance structures (ransparcently in formulas for
obscrvables. Therefore. it is worth reformulating MQDT so
that it has all the traits of both theorics.

The first picce of work on this linc was donc by Giusti-
Suvor and Fano® lor a two channcl system. They noticed that
the usual Lu-Fano plot ofien obscures the svmmetry of the
plot. If the origin of the plot is moved to its center of
svmmetry by the usc of the phasc-shificd basc pair as

(f@—> (fecosmt—gsinmy. geos m + fsin ). (1)

the diagonal clements of a short-range reactance matrix A
become zero so that there remains only the coupling strength
between open and closcd channcls. Tn this way. resonance
structurcs arc scparated from background oncs and their
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propertics arc casily studicd in the new representation.

The generalizations of their method to the gencral sysiem
involving arbitrary numbers of open and closed channcls
were done by Cooke and Cromer.” Lecomte.” Ueda ® Giusti-
Suzor and Lefebvre-Brion? Wintgen and Fridrich.” and
Cohen.'" All the gencralizations utilize the simplifications
and the transparcnt resonance structures in the formulations
derived from the zcros of diagonal blocks of the short-range
rcactance matrices. Only total cross scction formulas for
photoionization proccsses have been dealt in their work,

In this paper. we will adopt a different approach in which
we scck the MQDT formulation identical to the onc of the
CM theory by comparing their physical scattering matrices.
Transforming the § matrix of the MQDT formulation into
the form of the CM theory can be done with the phasc renor-
malization by Giusti-Suzor and Fano without the need of
utilizing the morc powerful transformation considered by
Lecomte and Uceda. # Dealing the efTects of the phase renor-
malization on § or cquivalently on the phase shift matrix'* A
defined by S = cxp (-2/A) is not a simple (ask for syslems
involving more than two channels since cigenchannels for
the phase renormalization and the ones for S or A are of
different characters, I only two open channels are involved.
it can be studicd with the geometrical method developed in
Ref. [1. 2]. By making usc of the phasc renormalization and
the geomcetrical method (ogether. we will find in (his paper
the representation in which MQDT gives (he identical forin
of scattering matrix with thc CM onc and thus we will
ceventually relate the clements of (he shor(-range reaciance
matrix A" to the geometrical paramciers of the CM (heoty.,
The reformulation will allow us to obtain the simple formula
for the time delay duc to the presence of closed channcls and
the partial cross scction formulas analogous to Fano's
resonance formula which has not casily been available in
other's work.

Scction 2 bricfly describes the multichanne] quantum defect
theory. Then the phase renonmalization is described in Section
3. Scction 4 sununarizes the construction of the § matrix by
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the geometrical method in the CM theory. Reformulation of
the MQDT formulation into the one of the CM theory is
considered in Section 3. Section 6 considers the contribution
of the closed channels and Section 7 derives the partial
photofragmentation cross section fornmulas. Finally, the
summary and discussion are given in Section &.

The Brief Introduction of the Multichannel
Quantum Defect Theory

In the multichannel quantum defect theory, the fragmenta-
tion coordinate R is divided into two regions R < Ryand R >
Ru. the inner and outer regions. respectively. In the inner
region. transfers in energy. momentum. angular momentum,
spin. or the fonmation of a transient complex occur due to the
presence of the strong interaction between the colliding
partners there. In the outer region. channels are decoupled
and the motion of a system is governed by the ordinary
second-order differential equations and described by the
superposition of the regular and irregular solutions for each
channel. say fi(/2) and g(R) . for the j-th channel. For the -
channel system. the N independent solutions in the outer
region can be taken as

PR )= 2O (w) [ £ (RIGi—g (R K. (j=1....0) (D)
!

where R is (he coordinalte for (he relative motion of colliding
pariners and ®(@) arc the channel basis functions for (he
remaining coordinate space (notice that F; arc not ortho-
gonal functions bul used more widcely (han (he orthonormal
oncs'™). The corresponding .V independent solutions describ-
ing (he motion in the inner region are described by

YR @)= 2L dy(@) xR 3)

J

where the radial functions are obtained by solving. for example.
close-coupled equations starting from the origin. By impos-
ing the condition that the values of the wavefunctions are
zero in the origin. solutions are ensured to be the regular
ones. The wavefunctions (2) in the outer region are then
determined by the continuous conditions of W (R. @) and
their first derivatives at the matching radius R.,. The base pair
SRy and g(R) can be given by analytic formulas for the
long-range potentials like Coulomb or dipole ones. But for
the zero field. the pair can only be obtained numerically. for
example. by the Milne method proposed in Ref. [14].
Though motions are decoupled in the outer region. closed
channels are still effective and remained in the summation of
Eq. (2). But in the asvmptotic region. the system can no
longer stav in the closed channels and the contribution of the
exponentially rising term should be zero. The number of
independent solutions which remain finite in the whole space
will be equal to the number of open channels. Let us denote
the independent solutions as ¥, . They can be expressed into
the linear combinations of the N independent standing wave
solutions (2) as
Y,= Y WZ,co0s8,+ Y WZ,cosB. H

EeP e Q
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where P and ¢} denote the sets of open and closed channels.
respectively, & are the eigenphuse shifts for the X matrix
which will be defined later in Eq. (13). and §; is the
accumulated phase shift in the i-th closed channel defined in
Ref. | 14). The factor cosd, is introduced in two respects: to
make Z,, (i € P)orthonormal and to normalize '¥; in energy.
The factor cosf, plays the similar role. Substituting the
asymptotic forms of the regular and irregular base pair for
the open channels given by

2,
FR) = [Pigingk g+ n,).
7k,
2m; -
g{R) = — [—cos(k R+ n). (3)
l\l 7k,

and for the closed channels given by
", o1 KR —KR
LRy — /%(sinﬁ,u,]e“ —cosfi e .
i

. _1 KR -NR
gHR) — - )%(cosﬁ,é)r]eA' +sinfoe ). (©)
i

into Eq. (2) and setting the coefficient of the exponentially
rising term in Eq. (4) to zero, we get

2 (K; +tanf;6,)7, cosf; + ’.EEP K Z,,c088, = 0.

ie @
ye. O

Paramcters ;. fik,. and 13; in Eq. (3) denote the reduced
mass for the rclative motion of photofragments along R
when (he core is in the i-th channcl state. the momentum.
and the phasc shifled in that relative motion. respectively.
The parameters /&3 in Eq. (0) is the analytical continuation of
k; in closed channcls, For the definition of [3; in the same
cquation. scc Ref., [14]. From the asymptotic form of ¥, :

¥, —>j€zp 27;_;::([))7}[’5“1(};)[6 + 1+ 38,). (&)
we have
er-‘ - Tjr-"
rezp (K, - tans,8,)Z, cosd, + ’EXQ K, Z,,cosf8, = 0.
(Ger. 9

Egs. (7) and (9) have a nontrivial solution only when the
equation

L0

K —tang, K
| K+ tanB

=0 (10)

is satisfied. The formulas for 7 ;, are obtained from Eq. (7)
as
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¢ SOV -1 RN
Lo =— X (K" +tanfy K 1,008, (1)

je Qe ¥

where super-indices are added to indicate to which of open
and closed channels the row and column indices of the X
matrix and 7 belong. Substituting Eq. (11) for Z; ,» and after
some manipulations. Eq. (9) can be w ntten into an
eigenvalue equation for X ;

Z K, T,,cos8, = tand,T, cos§,. (12)

Jitip i
where the £ matrix denotes

o 06, 00 -1 o
K=RK"-K(K +1anf)) K. (13)

The asymptotic form ¥, is obtained as Z P PA £ 68—
K,)T» cosd, . showing that X is the reactance ll'ldtl‘l\ in the
.155 mptotic region.

In the multichannel quantum defect theory. the complex
resonance spectra occurring in the photofragmentation and
collision processes are explained in terms of only a few
parameters. the energy-insensitive short-range X matrix, or
its eigenphase shifts and eigenvectors p, and { . and the
long-range quantum defect parameters 1, and S. The
complicated behaviors of the spectra are brought about by
the boundary conditions in the asyvmptotic region. These
spectra are described by the incoming wavefunctions ‘I"

(j=1. ... N,) whose forms in the asymptotic region dre
given by
( N l z 2m;
<D(f 5 f,SU) (14)
!t .l

and can be obtained by the linear combination of the
fragmentation eigenchannels ¥,. In Eq. (14). /= denote
exp{xikr).

The Phase Renormalization

Intra- and inter-channel couplings are usually entangled in
solutions of Eqs. (7) and (9). or equivalently. of the secular
equation (10). which makes the identification of the reson-
ance stnictures in the solutions difficult. Giusti-Suzor and
Fano® used the transformation. called the phase renormali-
zation. originally considered by Eissner and Seaton'” for the
different purpose. to separate out an inter-<channel coupling
from the intra-ones by making the diagonal elements of the
reactance matrix K zero and thus were able to identify the
resonance structures clearly. Their work was extended by
Cooke and Cromer.® Lecomte. Ueda® Giusti-Suzor and
Lefebvre-Brion.” Wintgen and Fridrich'® and Cohen."
Though their work. especially the one by Lecomte and Ueda.
is essential in investigating full resonance structures in the
MOQDT formulation. the phase renormalization is enough for
the purpose of the present work. ie.. of reformulating the
MODT into the form of the CM theory. Phase renormali-
zation utilizes the freedom we have in defining basis pairs
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used in Eq. (2). The pair of functions obtained by shifting
phases in a basis pair defined in the outer region can still be
used as a basis pair in the same region. The phase
renormalization may be regarded as being caused by the
change of potential in the inner region. The potential used as
a reference in the inner region to define the basis pair in the
outer region is considered by Mies and named as the
reference potential.’® If the potential is not taken zero in the
inner region. the base pair contains the contributions from
the short-range potentials and the long- and short-range
contributions are no longer treated separately in the MQDT
formulation. But still the long-range contributions are absent
in the short-range A matrix. The change in reference potentials
brings about the changes in the phase shifts 1, and f.
defined in Eqs. (5) and (6). by 7y, as

Ny for je P

~

B

where the tilde is used to denote new phasc shifts. The
transformations (15) of phasc shifls corrcspond to the
transformations of the basc pairs as

n + i

B+ mu, for je O. (13)

Sy =1 cosmu, — gsinzy,.

=/ sinmy,. + g.cosz,. (16)
and of the N independent standing wavefunctions as

l{jizzq)(/, g_; ])
J
W, = Z D(f;8, -2k, (17)

The K matrices and standing wavefunctions are similarly
transformed as

K= {Nsinzy + cosmy) ](_Kcos Tl — sinzl). (18)

W = W(cosmu — singuk). (19)

respectively. Transformation between fragmentation eigen-
channels ¥, and Withe asymptotic region defined by

¥,= 2 @7, ,(ficosd,—gsind,).
ferl
= 2 @75(fic0s8,— g;sindy) (20)
JEF

will not be considered as it is irrelevant to the present work.

Finally. let us consider the transformation relations bet-
ween S and $hatrices. For this purpose. it is convenient to
define a little different incoming wavefunction ¥( n)_;-_)
whose asymptotic form is given by

2 e 1 —ik
lP(n)l J_) 2 1, ( kR r”(i_-—e STE WL
Tk J

e P '}

na S( n)y]
(21)



974 Bull. Koreoann Chem. Soc. 2002, Vol. 23, No. 7

instead of the usual ‘I{,_) whose asvimptotic form is given
by Eq. (14). The usual ‘{‘L " can be written as ‘P(O)J‘ ‘
in this definition and & as b([)) If we consider W(R)~
corresponding to a new reference potential, its asymptotic
form will be given by

N 2 R AR
\P(n)jlé Z o, ’m(: _ :;)6”_(? t3
e F ”]‘r

2 R kR i oo~ Sl R
Z CD m r 5,-}. e & ¢ ”"S( "):j(«’ q_)e:q
Ler N ”A (22)

r\n;

R AN
J S(n)u)

=¥ 0) 23)
Eq. (22) vields the transformation relations among various
scattering matrices

S0y, = ¢ "S(Mge T =e TS e . X))
and the corresponding ones for these incoming wavefunc-
tions from Eq. ( 23) as

in

WOy = Wiy e = weple 25)
If we restrict the number of open channels to two. the
simplicity of SU(2) algebra allows us to deal with the
transfonmation relations among various phase shift matrices,
the generators of scattering matrices. instead of scattering
matrices as a whole as will be seen in the next subsection.

A, The transformation of the § matrix by the phase
renormalization in the two open channel system.

K in Eq. (13) is defined in terms of the submatrices of the
short-range A" matrix which. in tum. is defined with respect
to the basis pair f. g in Eq. (17). indicating that it
corresponds to K(#). 1t shares the eigenvectors with S(1).
From Eq. (12). the latter can be expressed as

| ]

S, = 2 T T, (26)

If we restrict the number of open channels (o (wo. the 7

malrix can be parametrized with onc mixing angle. say 8.
by

_ %
T=e"'2% 27)

For two open channel systems. the diagonal matrix exp
(—2i&) can be expressed in icrms of (he Pauli matrices as

e %0 —if&1 1 Ade)

=¢ - . (28)

=28
4 =

0 6,—3."5:
Substituting Egs. (27) and (28) for T and cxp(-2:9J).
respectively. Eq. (26) becomes

s g
NGO, 150,
o 2

. B .
S(m =e e 2% "= e hden  (29)

where # is defined as R{&)z and equal to z cos8 + x sinb.
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$(0) is calculated from Eq. (24) by substituting Eq. (29) for
S(17) and the expression for exp(—i1) similar to that for exp

(=2id)as

An
indeg-n 1= O
E? -

Ry
S0y =e &= e, 150,

ildc-n<)  jAdg-n” iANC.

=e¢ - e e " (30)

where 1’ denotes R.(Am)n. [n the same way. 8$(0) is obtained
from 8(7) as

AS‘(O) — e—i(‘:s:_ ! ’f:]e ”\30' ﬁ‘ei!\ﬁﬁ:. (31)
where 7’ denotes R-(An ) with # given by R, (G)z with
the mixing angle B defined as T = e\p(—:GO'Jz) Let us

rewrite the relations between Mnd 7, in Eq. (15) as the
relations between their respective sums and differences as

??; =Ny + mis.
All= AN+ mAu. (32)

Equaling two cquations (30) and (3 1). we abtain

B M) idde -idng. _ e—rl,‘;ix ~ ’lee_mzso-.ﬁ’e—mﬁq

(33)

Taking the trace of both sides of the above matrix equation
vields

5 + }?Z = 3! + ﬁz. (34)

which shows that the sum of the eigenphase shifts are
invariant under the change of the reference potentials. From
Eq. (34). &r isrelated to s as

S}: = (52 - ﬂﬂz. (35]

The remaining anisotropic part becomes

e IAdG = l’:'\;so";l'e ,-]!_.-\.UG_.‘ (36]
With o= #n" o [R{rAmN] = cxp(-inAnc/2)G - # cxp
(inAno/2) and AT} = A+ mAu . Eq. (36) can be rewtitien
after some manipulations as

ooiN0T T ind i IR G7)
where n” represents R(—mAu)n. Eq. (36) or (37) tells us
that the new phase shift difference AJ. which is caused by
the anisotropic influence of the reference potentials in two
eigenchannels. cannot be obtained as a simple translation of
the old AS by zAy as in Eq. (35) for the eigenphase sum.
This derives from the fact that the eigenchannels for S(17)
and the ones for exp(izApt) are of different character. The
combining rule of AJ and zAu for AS can be obtained at
first by expressing Eq. (37) into the spherical triangle shown
in Figure 1 following the nile described in Ref. [2]. Then,
from the laws of spherical trigonometry. the formulas for the
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Z A

AN

6

T—Ad

b e - - -

Figure 1. The dl.lHI‘zil‘l‘l showing (he relation between AS and its
transfonned A3 due the change of reference polentials,

new A and &n terms of the old ones are obtained as

cosAS = cosAS cosmAl + sinAS sinrAl cos.

~

ot@ = (0059 cos rAU — sin TAY cot Ad).  (38)

Geometrical Description of the § matrix for the
System with twoe Continua and One Discrete State
in the CM Theory

The form of the § matrix in (he neighborhood of an
isolated resonance in multichanncl processcs is well-known
and has been rcpcalcdlx derived in the past using various
resonance (heotics.!” For the svsiem composed of onc dis-
crefe stale ¢ and many continuum wavcefunctions l;f ( £).
the S matrix defined by Eq. (14) may be obtained’ a

e - 39
e Fy— izl

l .
Yy 8| 8y +2mi

e P

where 15z denotes (U{E—’(E)lﬂl@) and S;:',J.,, is the back-
ground scatlcring matrix. Eq. (39) is different from that of
oulgoing wavc in that ; is replaced by —7 and adopted here as
our inferests arc in (he photodissociation processes. 27%
| 1% | = is the spectral width of (he resonance peak and will
be denoted as T Eq. (39) can be greatly simplificd by
introducing Fano's “a” statc. ¥“'(&). dcfined as

lw'"' () = J%’ S (40)
;

[cr) i)

Iy ('

and the projection operator I1, =
element is given by

whose (i. /)
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() (et =1 2 . o
=G e Y = g G

With Eq. (41) and cot g, =
matrix form as

=2(£~£0)/T. Eq. (39) becomes in

S=8"+(e " - 1) ST, =S"[L + (e ™ — DIT,] = S .

(42)

Let us restrict the number of open channels to two. Let the
background $” matrix in Eq. (39) be diagonalized by the
similarity transformation as 8” = {7 ¢ (17" " where {7 is
a real orthogonal matrix as the unitary 87 matrix is
svmmetric. The 8" matrix may be expressed in terms of
Pauli matrices as

) | e 2i4) 0 -
Sl) = K ((;u)lﬂ

0 e

lo o iR1+A%o Lo g HR1-A%e ng

=¢2%e T T TeVi=e 5 W (43)

where #, = R(B)z. 8y =8, + 8. and A}, = 8 - 8. If we
denote the m-th eigenchannels of 8 as t,. [ .",-',,.r may be
considered as the transformation matrix from ¥~' to .
The interaction matrices (¥, | A | ¢ ) are real and can always
be taken to be positive by choosing appropriately the sign of
., at the origin. Let (y, | /| w) = JI',./27. Notice that I
+ I is equal to the previously defined I'. Then, we have

(( |))\/l _15,.1-[“ (;n S a1 - 5,0"",). (44)
where #, is defined by
#,=R(-ADR(8)z
= (sin@,.cosA[f:‘ —sin 9,.sinA'1’3. cos,) +43)
with
g = r-r,
cos8 = -
ing, = ZANLE 46
sinf, = ——. (46)
Rcf. [1] obtained
e—iAu(T_é)—ibl_O' o, e—ib_l(}' “n . (47)
where n, and J, are defined by
n,=R(8,). (48)
n E,— 4
cotd, = —COtA |, —2 by (49)
55 + l
respectively. with g, = — cot6,/cos A~ and
SmA _
e, =-colg, = =€, — cotA] ~€088.). (30)
sing,
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With Eq. (47). the 8 matrix becomes

(it 4)

ida.on,
T Y =e¢ ¢

S=e i Dy (( io’_c-na‘
(31)
where #;, = R(8)n,. In Refll [2]. all the procedurcs
described so far arc shown (o be neatly fitted into the
construction of the spherical triangle shown in Figure 2.

£

The Solution of MQDT for the System with
two Open and One Closed Channels

Let us now consider oblaining the solution of the com-
patibility cquation (10) for the sysicm involving two open
and onc closed channcls. where the compatibility cquation is
reduced 1o

K,,-tand K- K)s
K-  Ke—tand K- =0 (32)
Ays Ky Ay tanf

and can be wrilten as a quadratic cquation for tand as

(lanf + K Man" 8- (lanff+ KK lan §
+ )& tang + 5] = 0. (53)

Eq. (13) becomes for this three-channel system as

. A—()L'A—C() _
K= AOG— —(.(. (34)
tanf+ K"
and its trace and determinant are obtained as
ok = g - St s
tanf+ K

1Kl - IanQ‘KW| + |1\'|. (

tanf3+ K

h
h
~—

Substituting Eq. (33) for the corresponding terms in Eq.
(33). we obtain

tan”§ — trKtand + |K] = 0. (56)

The two solutions denoted as tand. and tand. are obtained
with the discriminant 7 |= (trtK)” — 4| K |] as

K+ -
and, = “%JB 37)
whercby
lané. — tané_ = Ji_)
tand, + tand_ = trk.
tand. - tand_ = |K]. (38)

Chun-1i oo Lee

As is well known cite."*' the behavior of the eigenphase
sum d5(=4d, + & ) should be simpler than those of individual
eigenphase shifts. Let us consider the tangent functions of
the sum and difference of eigenphase shifts:

K e o LI ol " o .
fand, = trk _A tr[:(‘ tr{A" A )(wtrlx tmﬁ‘
L |K] K '—|K|+(1—|K |)t2111)3 i
(39)
«_ D
7 = ) ]
tanAo T+ K] (60)

The eigenphase sum &5 of Eq. (39) does not show the typical
resonance structure. By changing the reference potentials.
we want it to be given as the form tan &  — &/tanf . which
shows the typical resonance behavior as described in
Appendix A. The corresponding equation to Eq. (59) for the
new reference potential becomes this form when its
elements satisfy

ooy

™ =0, K=k ©1)
[n this case.
tands = —& /tan . (62)

where & is defined by

gt )
(-|&

el
From trX” =0, we have

Ky = —Kan.
|~'oo =—(I1;'11|~+|1~\'1: <0 (64)
and the squarc of & becomes
T
g=Auths (65)

L+ R+ K-

where its positive-ncss is shown explicitly.

A. The Extraction of CM Parameters from MQDT
Formulas. ~ _

As cxplained in Appendix A, if Jy salisfics tandy =
-&fan B . 1t shows the identical behasior with (he resonance
cigenphasc shift 8. and may be regarded as identical (0 8,

Syx=3,. (66)

For convenience. Iet us call the reference potential in which
Ox satisfics Eq. (62) the resonance-centered reference
potential and the representation {he  resonance-centered
representation. Let us now  examine how  other €M
parameters are assigned to the clements of the & matrix in
the resonance-centered representation as the result of the
assignment of 8, (o dx . For this purposc. let us utilize ihe
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equality of §(0) given by (51) in the CM theory and given by
Eq. (31) in MQDT:

i8-8 idaon W& -y Ladg.Al A6

¢ ¢ =¢ ey . (67)
The aboyve matrix cquation holds when isotropic and aniso-
tropic parts of both sides arc cqual. respectively. as can be
casily scen by cquating the traces of its Icfi- and right-hand
sides:

& + 8, =6y + M. (68)

-id o-n iNdG .’ —iIARG

e =¢ e ~ (69)
Because of the equality (66), Eq. (68) vields

& = Ny (70)

Since the left-hand side of Eq. (6Y) has two parameters. i.e..
8, for n’ and §, while the right-hand side has three
parameters AG. A7l _and for  #there will be an infinite
number of ways of making both sides equal. The simplest of
all will be the one that makes one of two exponential
matrices on the left-hand side a unit matrix. which can be
achieved here by setting

Al =0, (71)
In this setting. #’ which is defined as R.(A n Y#it becomes
equal to # . The right hand side of Eq. (69) is now simplified
as

e et e_iéb‘o‘;" (72)

Eq. (72) holds when
n, =n. (73)
5,= AS. (74

Since vectors #/, and fare oblained from (he
rotating aboul the v axis by 8/

z axis by
. and 8. respectively. the
cquality of two vectors is produced when 8, = 6. 1€ we
rccall that a projection operator of type (1 +6-#)72
generates an cigenchannel of o - 7. Eq. (73) indicates that
both $(0) and S( 7 ) have (he identical cigenchanncls.

From Eq. (60). (gnA § is given in terms of (he clements of
the & matrix as 4/D/(1 +|K]) and since AS is cqual to 8,
from Eq. (74). we should be able (o write §/D/(1 +(1K|) into
the form in Eq. (49). Tn order to do this. Iet us start from
rewriting the discriminant D using Eq. (33) as

HL. L0

Lir(R7 K4 = 4% |tan,8+|&|)(hmﬁ+|k|)

(tanﬁ+ |K|

=
(75)
Let D denote 1) (mnﬁ+ IKI

-~ i np+ 'm] NS}
2'[\ |

| REl]

D may be rewritten as
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n [lr(f;ucf;‘m)]" - (7())
Using the relation
|120 |) |X.|3 + [lr(kuckcu)_r
£
| oS
= - (K- K3 YRz - 2K K 3K J (77
it becomes

D=- ,%'d[\”)l (tdnﬁ+ |A“|| |]
ml 2‘[\0(

+ [(IN\'}: - i’fs)i\'lz - 2;\'11;\'13[}:3J~ }

B

~ a2

x[ 4(1\';1 +1{'1:)_
L(ATs = K33)K 13— 2K A 3K 03s ]

m] ]

f\'i_z)fx'lz - 2[\'1 ] K].z/\':sl_
i\.‘fl +f;'f:

(7(

(l*m B+ ——F R

— I.([;'f.\ —

(€ +1). (78)

where &, is given by

_ 2(K +K2)
(K7s—A33)A2— 2A11K13K;

[t'mﬁ

2(/\'TJ +KT:)U\'%3 +K3)
[(i';.z - k;})}\']g - 27:'1 11:'1_:/;':3](1 + '{ll + r{'f:)
K;:(AT - /:'gj)ku + 21{1:!{'13 ,{'33]

[ 1-K7 -
x|e, - ———— —
2(AT +K75) Ky + A5

(J{J

DI
2(1\11"'/\1“)

(79

In Egs. (78) and (79). &, and &, are used as convenient
notations for —cot8, and —cotd,. respectively. In the CM
theory. they are reduced energy parameters and can vary
from —=< to « only once while in MQDT they undergo such
a variation repeatedly every time 8, or §, increase by 7. By
giving up the meanings of €, and £, as energies and replacing
them with —coté, and —cotd,. respectively, the same CM
formulas for an isolated resonance can be used for all
resonances belonging to the same threshold by extending the
ranges of 8, and &, from [0. 7] to |—e<. =a]. Then each interval
|(n=1)m. nm| corresponds to one resonance. Equating Eqs.
(79) and (50). we obtain
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sinA‘]':_
sin®,
2(K0 + E‘)(Es +K35)

Sl — . (80)
L(As—Kz: VK12 — 2K K 5K J(1+1\11+]\1)
COlA}5c05 8=
I R R A A
A = Ki2(Ky3— Ass)A 1\1_/\1./\_.‘ 1)

2(&1 + k?:) ;U + t\-

Both signs arc possible for the right-hand side of Eq. (80).
But the positive sign is not taken as il yviclds the inconsistent
result.

Thus far. we considered the numerator of the formula for
anT\.ﬁ Let us next consider ils denominator given by
1+ |X|:

1+[&] = -

(1+ |[:"m| )tauB+2|i‘|
tanﬁ+|!:'|

=& : ,
B I R RSP Sy S LAl P
2Ky + K muﬁ+|k|
(82)
where ¢, is given by
coto,
qg =- 4]
COSA |,
1 +K?1 +1i$ (kfa —kz")/’;n + 21;'1*/; 1’; 383
(1- Ky 1-Ka) (r\n—/w:)kl“ — 2K K 3K
From Eqs. (78) and (82). wc obtain
N T R N
cotAd= —An—he L9 84

2R+ KN

cosA|, = IAnAe (83)

2«)1:'?1 + 1;[2

The sign of the right-hand side of Eq. (84} 1s not uniquely deter-
mined as it is obtained by taking the square root of the discrimi-
nant £ but is taken as minus in order to obtain cotA‘]"2 m the
form of Eq. (83) s0 that the scli-consistencey 1s oblained with the
convention that sin All": 1s positive. From the convention that

whercby

. 13 ) e . ) — :
sinA |~ 1s positive for small magnitudes of A maltrix clements.

we have
L afer
smA"f3 = % (86)
L+ K +R)
| 2t
cosA']" = 1}” &J = 87)

Chun-1i oo Lee

From Eqs. (80) and (86). sing, is obtained as

sing, = — (A —A2s3A0 — 2R K)5K 03 (89)

An ‘H\P(Ah +K33)
and cos8. is obtained from Eqs. (81) and (83) as

il

(K- KoKy + 2K 0K 5K

]
2

(39

So far. we found the formulas for the CM paramcters 8.
8y . and ctc. in terms of the clements of the short-range &
matrix and the long-range parameters 77y and ﬁ Though it
docs not appear explicitly in the formulas of the CM theory.
@ is a CM paramcter which should be included in the
theorctical derivation and still remains to be expressed in
tcrms of short-range MQDT parameters. This connection
can bc achicved by considering the K matrix without
including the clcmcms related (o the closed channel, which
will be denoted as & and is given by

Rﬁ': [\'ui\'l: _ f;'H K]:

.- R (90)
Az K Kz =K

. =il ) .,
Its cigenvalucs denoted by tand; and tand: arc casily

oblained as
lanST = q,fi\-‘]"] +f;-%1.
(ands =~k + K1 1)

i ~il ~il
revealing that ) =—-48: . Therefore we have

Sy=0. A8 =23). (92)
Following the previous convention. its eigenvectors may be
parametrized as (cos 8472, sinby /2) and (—51116., /2. cos B4 /2)
with

~1)

cos% = sign(I:'D)(

~ -~ ~ -~ ~ 1:2
AR+ KA ]
2,.{1;'1:1 + 1;?1

12

= ~2 -2 s
. ERE G
Sil’]% = (M] N 93)

where sign(&,-) is 1 for po§m\c K2 and —1 for ncgamc
K12, Let us consider the §° matrix corresponding to A
Similar to Eq. (29). it can be wrilten as

wn N -~ e -
= 18 —iAS G- R —iAd g R

S =¢ e =¢ R (94)

where 8y = 0 is used. Inserting &0, ARO. and  r'=h
into the background form of Eq. (31) and then equating it
with the one in Eq. (43). we have
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Iy —1 8 —IAI{‘, -ny, -t A P n -
590y = ¢ BTN 2 T O 95)
The equality of the trace of both sides of the matrix equation
(93). which is isotropic to channel interaction and given by
6‘2 = 7. Is consistent with the previous (70) and. from the
remaining amisotropic part to channel interaction. we obtain

) ~

AY = a8 =23 (96)
9” = é(l. (97)

In terms of Pauli matrices. eigenphase shifts, and mixing
angles. X" can be rewritten as

il

A,
anTa [R_‘.(G.;,)z]. (98)

K 1'm610' [R, (9.))‘

from which we have
il
Ky =-Kx»= lanfcose(..

n

K |~ = tan— 51119,, 99

2

Eqs. (93) and (97) vicld

cos@, = %
NA +H A
sing, = f =3 (100)
K+ K
Substituting Eq. (100) into Egs. ( 89) and (88). wc obtain
Kis— K 2K 15K
cosB, = —N;”cos&, + ﬂ"—;;sme‘..
K13+ A5; Aix+A5;
Ty — K 2 .
sin@, = —Msina, + ~{\'—1\(:059., (101)
K13+ K5y K7+ A5
and accordingly
Kix— A3 2R 1K
S = cos(6,+6,). - =sin(f, +6,) (102)
KT;*‘K:_‘ A]: +1\:.‘
and finally
————— = C0S= (9 +6,). = sm%(e,# (7]

Afﬂn+ﬂ*;

arc obtaincd. Substituting Eq. (65) and &7 + K7» = tan°A'
/2 obtaincd from (99) into Eq. (103). Az and A
expressed completely in terms of CM parameters as

(103)
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K]; = _éTCOS%(G,. + 90). f;:; = —%sin%(&',. + 9,:,).

12 12
cos—=
2 2

cos (104)

Only &mong the clements of the matrix remains

unexpressed in terms of CM paramcters while expressions

for the others arc given by Eqs. (99) and (104). Tts

expression is casily obtained from Kzz = |A’ as lollows

CEAINILE IRE N SHSC
1+K1+K2

(Ah
IS :

(105)
The final cxpression for the short-range A matrix can be
writlen as

0 u .

Al 1
tan%cos&, tan—+ smG(, —g—cos,-)(e,.— &)
2 Al’ 2
cos—~
0 K I
S, 32 é .
K- lszmnﬂo laufcos &, Tsins(6,1 6y)
2 2 A 2
cos=
i
2 2
—é—ows (6, HC) )sm (t’-} 1 6,) é'lszcos(i,.
cos=2 cosm )
2 2

(106)

Originally 6 paramcters are needed to describe the short-
rangc A matrix duc 1o its symmctric nature. The (two
conditions (01) for the resonance-centered representation
restrict the number of independent parameters to 4. In Eq.
(106). three CM parameters Al . 8. 8, and onc shorl-range
parameter & represent those four independent parameters.

Long-range parameters 77 and fire wlated 1o the CM
paramcicrs as

AlT=0.
fis = By.
tanf = S (107)

tand,’

In the above. we obtained the representation. called the
resonance-centered  representation. where  behaviors  of
cigenphasce shifts show thosc of the cigenphasc shifls in the
configuration mising theary. s —cotdy = tan /& and
cot Ad = —cotAl (g, —q,)/ e + 1. So far. we did nol
mention about 110\\ We can oblam this representation from
the given representation using the (ransformation (13). ie..
what arc the valucs of g, . and u; or cquivalently ps. Ap.
and 3 which give the resonance-centered representation.,
Onc of them. Ay. is oblained as —An/z from A1 = 0 and
ATy = An+rAu. The procedure of obtaining (he remaining
aand w5 is lengthy and given in Appendix B. The resulls
arc reproduced here
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tan2zy, =
24t KR - t(A“,g“')J
+ (1 =[x ho - [x Dy (108)
(IrR7%) = TR 1K™ - lr(A”‘A“’)]
+ (1 =&y = - Iy
tan2zu, =
2601 KPR + LRk — (K]
< (K& 1y
(=& + &~ |k by —ar K‘"’): (109)

I-A(b L0 lr(AO( A(O)]

The origin of the Lu-Fano plot of ( 8. d5) is moved to a new
position by the shifts given by (zit;. iy ) in Eq. (109) so
that the plot (. 0}:) becomes syimmetrical in the new
coordinate system.

The contribution of the closed channels

When the system is in the p-th fragmentation
eigencluumel the system is described by the wavefunction
¥, =Z.,¥7 pcos]S where 7., is the probability
amplnude that the sy stem is found in the i-th stationary state

¥ and cm&,ndllzes pel,unit energy. The
probability amplitude that the system is in the i-th open
channels is described By, . Siri€g,
flux of particles in collision is conserved. This should be so
as the wavefunctions describing closed channels become
zero at the asymptotic region. Though the presence of the
closed channels do not affect the flux. it affects the collision
by delaving the process as the particles are trapped there for
some time. Here we want to find out how long the collision
system will stay in closed channels when the system is in the
p-th fragmentation eigenchannel.

The probability amplitudes 7;, for the system in the
closed channels are given by Eq. (11). In the present case,
only one closed and two open channels are involved. 1f we
use indices 1 and 2 for the open channels and 3 for the
closed one. the probability amplitudes are simplified as:

Z_;,,cosB =-> K;k’}',{-pﬂf‘%.

= (10
tan 3+ |&]
From Eq. (103) and tanB = ’g':s,.. the denominator of the
right-hand side of Eq. (110) becomes

tanB+ |/i| =

‘q':(e,. + tanlAll)zcos 8,,_)_

5 (L1D)
I we substitule &, sinB,fsinA33 + col/_\f1 cosB, for ¢, and
make usc of €, = —co18,. Eq. (110) bccomes

~

K] = —?d—sin(aﬂ -8.).

tanB + |A| (112)
SINAT,sING,

is orthogonal. the tanfs + Iy
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(& and &, are not the usual energy parameters but are used
here as convenient notations as mentioned before). When
Eq. (112) is substituted. the last factor of the right-hand side
of Eq. (110) becomes

cos%(()‘, +4,) for p=1.

~ . il .
cosd, sinA;,sing,

tanf3 + |&] )

&sin(8, - ) cos%(éi.—éd) for p=2.
(113)
By Delambre's analogies among the half-angle formula of

spherical trigonometry.™ we have

|
51115( 8,-9,)

cosl(&.+ 8)= ——cos—A'fm
2 P 7] ] 2 o
smief
1
1 <:<)s§(6[T -4) '
0085(5,—5‘,) = —1C05§Ali:- )
cosié}f.

Entering Eq. (L14). Eq. (113) becomes

sinl(Gu—G,.)
2
| - for p=1.
coss cosEA',):sinA'fzsinQ, Sinief
P
506 | cost(6,-9)
—— for p=2.
cosief
|
cosie,-
1 - —— for p=1.
coszA?zsinm;’zsmG‘, cos-(G -6)
§'sing, sian .
for p=2.
sinz (6 -8)
[
cosif)’-
) T for p=1.
sind,coszA;.| cos>(8,-6,)
SRt 2 i
- : (115)
5 sinEG,-
I for p=2.
Sillz( 8,-6)

By Eq. (104 and 7 = exp [-i(8, + 6:)a,/2]. (he firs( factor
of the right-hand side of Eq. (110) becomes

I =
0055(0‘,—9,.) for p=1.

COSTA}s —sm%(e‘,—e,_) for p=2.

Y Kylip= (116)
>
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Using Eqgs. (113) and (116). Eq. (110) is simplified as

cos%(?_f- for p=1.

~ ~ sing,
Zzpcosfl = l (117
sin:EB_,- for p=2.
From Eq. (62). we obtain easily
sind, (dd\"2 B (118)
——=|—=| cos
& (dﬁ)

(the convention that J, increases from zero as B increases
from —7 /2 is adopted here. which implies that sind,cos ﬁ >0
Or COS0, smﬁ < 0). Entering Eq. (118) into Eq. (117). we
obtain the formula for 75 o

cos%(if for p=1.

- dSN\12
Lip=|— 119
smzéf,. for p=2.
and the following equation is easily derived:
~2 {9,
Y Fip= = (120)

Eq. (120) shows that though the interaction becomes
complicated as the number of involved channels changes
from one open and one closed channels to two open and one
closed channels. the total time for which the system stays in
a close channel remains the same. The total time delay due
to a closed channel does not depend on the characteristics of
systems. The characteristics of systems appear when we
consider the branching ratio of the probability amplitudes for
a closed channel to decompose into open channels. This
ratio is determined by the transformation matrix between
fragmentation eigenchannels and resonance ones described
by the mixing angle & defined in the spherical triangle of
Figure 2. That is. it is purely determined by geometry.

Photofragmentation cross section formulas

In the photofragmentation processes. the final state is
described by Ihe incoming wavefunctions. Let us denote
them as ‘I‘ . They are obtained from the fragmentation
mé,enclmmlel wavefunctions ‘I‘,, or from the short-range
standing-wave channel wavefunctions ¥, as

m\]

= ¥ P[7Tcosde

ie P

‘Pj - 2 ‘P;_)e ' ;)_,: ],‘
2l

+ ¥ ‘i’;[cosBZe"ﬁ%mJU_

ie ¢

(121)

We note the following matrix rclations

Teosde 7 = (1 + iKY
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Figure 2. "T'he spherical tnangle formed by the (hree vectors 2, oy
and ..

I(\

cosﬁ7 = —(tanﬁ+ K ‘) l\ (l + IK) (122)
[t may be more natural to expand physical incoming wave-
functions with incoming-wave channel basis functions.
Using the transformation relation

W= Y WA iR (123)
2

between the short-range incoming- and standing-wave channgl
basis [unctions and alter some manipulations. we get

. L o . v e 1
W= T W (tanf+ ) anf+ K

ke Q@
XKC()(—i+k‘7‘)} 1 (124)
where X is defined by
~ew ~oe Yoo ~oo 1~ ac -
K= KK i+ 8™y K° (125)

which is the one considered by Lecomte but differs from his
by complex conjugation.” Let us now limit the discussion to
the two open and one closed channel case. Then R“
becomes —i& and we have the following identity

lan~ i i —iiB - 83(6]5 )1/2
tanf} — iéz ‘: dp '

With it. Eq. (124) may be rewritten as

(126)

3 ~ =] o _,[jl(‘)J d5 12 ~ a0
¥, =W - W e (—~) ”& (—l+1\ ) ]w
¢ dp
(127)

Now it is comcmcm 1o infroduce ncw short-range wave-
functions \f and ﬂpﬁncd by
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~ -y N(_] wr Vo~
7=, IR R,

TR P A

R R G R o N T
&

With these functions. the square of the modulus of the
transition dipole moment can be expressed into the Beutler-
Fano formula given by

P -l = et o2 B L
B

with the complex line profile index @eﬁned by

. _
(1/'_’ 0

(A 115

More detailed analysis of Eq. (129) can be done with the
lhelp of the transformation considered by Lecomte and Ueda
and will be treated in the separate paper.

(129)

(130)

Summary and Discussion

We reformulated the MQDT formulation into the form of
the CM theory by using the transformation considered by
Giusti-Suzor and Fano in order to clearly identify the
resonance structures. The transformation moves the axes of
the Lu-Fano plot so that the curve (. dr) becomes
symmetrical. But the short-range reactance matrix A
obtained is not a form considered by Giusti-Suzor and Fano,
ie. its diagonal elements are not zero. It means that the
intra- and inter-channel couplings are not fully separated vet
though the resonance position is centered in the Lu-Fano
plot. In the two channel case. to make the Lu-Fano plot
symmetric is equivalent to the complete deparation of intra-
and inter-channel couplings. But this is no longer true with
mere than two channels. In order to achieve that. we have to
introduce the orthogonal transformation as well as the phase
renormalization as done by Lecomte and Ueda. Therefore,
this work should be regarded as a basis for the full
investigation of the resonance structures in the MQDT
formulation. The full investigation will be published as a
separate paper.
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Appendix A: The differentiation of the phase shifts with
respect to energy

Let us calculate the first derivative of Eq. (539) with respect

Chun-1i oo Lee

to energy. Modifyving Eq. (539) as

erdl

tand, = trA —
1 _|£((
(?{J(lAv(Jﬂ|A IA‘I) + tr(A-(‘{,.A.-CU)( l _ ‘A()(‘ (Al)
(1 =gy [tzmﬁ+ [‘;)
[-]&”

and differentiating with respect to 8. we obtain

(1 +tan” év) [ﬁ

|A1)+tr(1("&"";(1 |A"“’|)(1+mnﬁ

.(l() parsl
USHS

(a-xy [tdnﬁ +
|A<m

TR

where the explicit formula for the first factor of the left-hand
sidc is given by

1 +tan” g, =

[[anﬁ A1 m]
| — |l\.zm|

{ o ﬁ T S 1) S lr(A‘“A“’)}
_ | ool |- ‘Kon

(lanﬁ + . |/\'|]
1 _ |Aoa|

The numcrator of Eq. (A3). when organized with respect to
tan . becomes

(A3)

ey sy’
(1 - |Aoo

{Tanf+ RO +HI (D
(AD)

where explicit fonmulas for *R(«™) and () arc given by

R(™) =

(K = KDL= K7D + KR k™ = (kK<)
=&y + ey’

F(xy =

~ (A-L‘L' _ |k’| )tr}\.ﬂl) lk tr!\.no lr(k"‘k‘”)](l _ ‘k.()() ]

0

=8 + ey

(as)

Substituting Eq. (A3) for 1 + tandy. Eq. (A2) becomes

ddy FOE( + tan” )
B fanf+ REN +HFEN

(A6)

FO) is negative as can explicitly be shown as
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(x5 =
(A —Aky)

+ (KoK | s — K1oKo9)" + K75 + A3

-3

= <0 (A7)

(1-]x

): + (tr&—ﬂﬂ)

and becomes equal to 5 of Eq. (63) when tr(X*)=0. Eq.
(A0) tells us that the derivative of the eigenphase sum with
respect to energy is alwavs positive. Even individual
eigenphase shift should have a positive derivative with
respect to energy according to Macek's formula.”

Eq. (A6) can be rewritten into a Lorentzian form as

40 - L @
d[tanﬁﬂﬂ.(\x )J [tanﬁ+‘}i.(\x )] +]
—F (K —F (&)

From Eq. (A8). the inflection point of the curve & vs. tanSis
obtained as tanf = —R(x*). which is different from the pole
position of tands given by tanf = —(K**—|K])/(1-K**) in Eq.
(AD). Twvo positions becomes equal to —R(x**) by setting
tr(K*) to zero. If we further set R(x*) to zero, the graph of
O enjoys the same behavior as that of &, in the CM theory
for isolated resonances if tanf¥& is identified with —1/¢.
Then we may set dx = & to make the MQDT formulation
lock like the CM one.

Appendix B: The phase shifts which yield the resonance-
centered representation

First of all. Ap(= gh—p:) is obtained from (71) and (32) as
TAp = -An. (B1)

The remaining two parameters might be directly obtained
from the relation (18) between A and X but the easier way
of obtaining them is to make use of the invariance of the
functional form (39) of tand: under the change of the
reference potentials. The invariance is the result that no
condition on the reference potentials are applied when Eq.
(39) is derived. From this invariance. tands is given by

KR (R K + ok anp
E IR (1K Tnp

Using the relations 8y = ds—mpty and = S+ au,. Eq.
{B2) becomes

@andy = (B2)

tan{ dy—7its) =
KC-‘L‘“.]‘\—"" 3 lr(K_m‘K_c:o) + tr[‘\_oolan(ﬁ + ﬂ‘u_;)
Kokl +0 - |[‘(Lw|)tal'1(ﬁ+ i)

(B3)

which can be transformed into the following by making use
of the tangent law:
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tand, — tanwyl,
| +tandytanmy,

4+ Btanf
= . B4
'+ Dtanf (B4

where 4. B. (". D are defined as

A4=Kak" - tr{ }1'“(:}1"'“) + trix’“”tzm T 5.

B=uk"-[K“ur® - lr([:.'o(:[;'w)]lalmy_;.

(= K’“—R‘I +(1- |[:”’ Jtanmyt .

=18 = &7 - |Khranmus. (B5)
When Eq. (B4) is solved for tands. it becomes

(-1 + Clanzuy) + (45 + Dianzu, )tanf
(O — Atansyy) + (D — Btanmuy )tan 8’

tandy = (B6)

Equating two equations (59) and (B6). we obtain the
relations containing the proportionality constant & as

ll:,cctrx,un _ tl‘( l:,ucl:,cn
+ [f;"w— |1;| + (1 - |f:'w|)15111::;.13]15111:1:;.1x

~ae e

= kK aR” (KK ). (B7)

Y+ trf':'wtalurﬂ_q

R = 1Kk - (K" K) Jtanzp 3

T l—l ~ a0

L0

| — (K —|&hranmu Janmu, = kK.
o . (B8)
8] + (1 =& anap,

-4 [K'“trf\’(w —tr{ K'W[:'W)J + trA” tan T ptanwiy
= k(K - A, (BY)

(=& - &= |xhtanzy,
_{ tri_rw_ I_ K_cctrK_rm _ [r( I:_m::,:_un) Jmn ﬂlu.: }tan”ﬂz

= k(1 =|&. (B10)
If we introduce p. ¢. r. s for convenience as follows
p=tuk" + | Kk (KK .
g = trK®™ = [KUR” — (A K.
r= 1= 8+ &R
s=1 - K=& =& @BI1)

we can express the sum and difference of Eqs. (B7) and (B8)
and also the same ones for (B9) and (B10) in terms of them
as

1 tanmi, Ny tangustanays || p
—tantis 1 —anmtanMie  andis g
—tanAps  —tan ustan Tits 1 tanmi, Iz

tanmustanAys  —tan s —tan it 1 s
F2i
-&|7| (B12)
r

>
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Eq. (B12) is inverted as

{7 irr,u;(i‘. . irrp;o'___ p
(3 cosmiye T SINTUy e ! s q
r . I N TAp; G, »
~ SIN7TUy e Cosmiye
A A
(B13)

where the new proportionality constant A’ is related to 4 as &’
= k cosmjiz cosmus. The proportionality constant may be
detenmined from the relation between A and K but the
detenmination requires a long tedious derivation. Eventually
it can be shown that 4" is equal to 1/| A sinzyt + cosmis | .

Eq. (B13) holds for any arbitrary reference potential. In
the resonunce- centered Tepresentation w here we have tn\ "
= [) and K |A l. p.q.r.and srerelated as = — g. 7
= v. When the latter relations are applied to Eq. (B13). we
have

COSTTH (PCOSTs — ¢ SINAU3) — SINAL(FCOSTLU3 — § SINTTLA)
= —COSTTH(PSINTH: + GCOSTLS) + SINFLy (FSINAU3 + § COSTHA)
(B14)

and

SINFTLy (PCOSAUS — ¢ SINAU) + COSTU(FCOSTU3 — § SINTTLA)
= SINAL (PSINTTH; + GCOSANU:) + COSAU(#SINAL S + § COSTUS).
(B15)

Dividing Eqs. (B14) and (B15) by cosatis and cosmyss.
respectively. and collecting the terms for tan zus. we obtain

p(l+1anzmu;) + g(1 —tanmuy)

tanmty = #(1 +tanzye;) + s(1 — tanap;)”
—r{1l —tanzmy, )y + s(1 + tanmy,
tanzyty = ( Ha) * 5( Hs) (B16)

p(l —lanmu)—g{1 + lanzu;)
By cqualing the above cquations for tanmus. we oblain (he
formula for tanmy; as
tan2 =
2{1rK‘"’rA*“’|m"" AR + (= KD kDY

(trK'm) tr(A.nf.k.ao)]—_f( - |[\.m1)3(R.cc_ |‘I\'|):
(B17)

-OII

— Kk

Chun-1i oo Lee

[n the same way, dividing Eqs. (B14) and (B13) by coszy;
and cosmitz. respectively, and collecting the terms for
tanis. we obtain the formula for tanstsz as

tan2 ity =
2[(1 | J?{1)tr .ll(l+ (}\ trA..(l(l tr(A.HCA.LU )(A |[\])J
(l | 41{1) +( —IA1) _ (trA.(I(I) _ lA tr}\..(l[l tr(}\‘..(lLA.L(l)J
(B18)

In the two channel system. general resonance phenomena
are described by the Lu-Fano plot which can differ from
svstem to system in the position of the inflection points
described by t and y: and in the amplitude of the curve
determined by the interchannel coupling strength & In the
svstem with mo open and one closed channels. two more
parameters AP and 6, are needed to describe the coupling
between two curves (ﬁ O_) and ()3 d, ) in the Lu-Fano
plot and the relative coupling strengths of two open channels
with a closed channel, respectively. besides three parameters
(1. ¢=. &) in the two channel system.
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