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The multichannel quantum defect theory (MQDT) is reformulated into the form of the configuration mixing 
(CM) method using the geometrical construction of the S matrix developed for the system involving two open 
and one closed channels. The reformulation is done by the phase renormalization method of Giusti-Suzor and 
Fano. The rather unconventional short-range reactance matrix K whose diagonal elements are not zero is 
obtained though the Lu-Fano plot becomes symmetrical. The reformulation of MQDT yields the partial cross 
section formulas analogous to Fano's resonance formula, which has not easily been available in other's work.
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Introduction

I recently made a geometrical construction of the S matrix 
for the system involving two continue and one discrete state1,2 
in the context of the configuration-mixing (CM) method of 
Fano.3 In this paper, I will apply this newly developed 
geometrical method to the reformulation of the multichannel 
quantum defect theory (MQDT)4 into the form of the CM 
one for the system involving two open and one closed channels. 
The configuration-mixing method and the multichannel quantum 
defect theory are two widely used resonance theories and 
have their own advantages and disadvantages. The configu­
ration-mixing method assumes the presence of discrete states 
from the outset, which has an advantage of treating the back­
ground and resonance contributions directly but making it 
impossible to treat the whole spectrum including bound states 
and continua in a unified manner. Multichannel quantum 
defect theory overcomes this limitation by not explicitly 
assuming the presence of discrete states. However, as 
resonances are handled indirectly, it is not obvious how to 
identify the resonance terms from the background ones or to 
show the resonance structures transparently in formulas for 
observables. Therefore, it is worth reformulating MQDT so 
that it has all the traits of both theories.

The first piece of work on this line was done by Giusti- 
Suzor and Fano5 for a two channel system. They noticed that 
the usual Lu-Fano plot often obscures the symmetry of the 
plot. If the origin of the plot is moved to its center of 
symmetry by the use of the phase-shifted base pair as

(f, g) t (f cos 찌丄 - g sin 찌丄, g cos 찌丄 + f sin 짜！), (1) 

the diagonal elements of a short-range reactance matrix K 
become zero so that there remains only the coupling strength 
between open and closed channels. In this way, resonance 
structures are separated from background ones and their
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properties are easily studied in the new representation.
The generalizations of their method to the general system 

involving arbitrary numbers of open and closed channels 
were done by Cooke and Cromer,6 Lecomte,7 Ueda,8 Giusti- 
Suzor and Lefebvre-Brion,9 Wintgen and Fridrich,10 and 
Cohen.11 All the generalizations utilize the simplifications 
and the transparent resonance structures in the formulations 
derived from the zeros of diagonal blocks of the short-range 
reactance matrices. Only total cross section formulas for 
photoionization processes have been dealt in their work.

In this paper, we will adopt a different approach in which 
we seek the MQDT formulation identical to the one of the 
CM theory by comparing their physical scattering matrices. 
Transforming the S matrix of the MQDT formulation into 
the form of the CM theory can be done with the phase renor­
malization by Giusti-Suzor and Fano without the need of 
utilizing the more powerful transformation considered by 
Lecomte and Ueda.7,8 Dealing the effects of the phase renor­
malization on S or equivalently on the phase shift matrix12 A 
defined by S = exp (-2iA) is not a simple task for systems 
involving more than two channels since eigenchannels for 
the phase renormalization and the ones for S or A are of 
different characters. If only two open channels are involved, 
it can be studied with the geometrical method developed in 
Ref. [1, 2]. By making use of the phase renormalization and 
the geometrical method together, we will find in this paper 
the representation in which MQDT gives the identical form 
of scattering matrix with the CM one and thus we will 
eventually relate the elements of the short-range reactance 
matrix K to the geometrical parameters of the CM theory. 
The reformulation will allow us to obtain the simple formula 
for the time delay due to the presence of closed channels and 
the partial cross section formulas analogous to Fano's 
resonance formula which has not easily been available in 
other's work.

Section 2 briefly describes the multichannel quantum defect 
theory. Then the phase renormalization is described in Section 
3. Section 4 summarizes the construction of the S matrix by 
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the geometrical method in the CM theory. Reformulation of 
the MQDT formulation into the one of the CM theory is 
considered in Section 5. Section 6 considers the contribution 
of the closed channels and Section 7 derives the partial 
photofragmentation cross section formulas. Finally, the 
summary and discussion are given in Section 8.

The Brief Introduction of the Multichann이 
Quantum Defect Theory

In the multichannel quantum defect theory, the fragmenta­
tion coordinate R is divided into two regions R Ro and R > 
Ro, the inner and outer regions, respectively. In the inner 
region, transfers in energy, momentum, angular momentum, 
spin, or the formation of a transient complex occur due to the 
presence of the strong interaction between the colliding 
partners there. In the outer region, channels are decoupled 
and the motion of a system is governed by the ordinary 
second-order differential equations and described by the 
superposition of the regular and irregular solutions for each 
channel, say 为(R) and g(R) , for the j-th channel. For the N- 
channel system, the N independent solutions in the outer 
region can be taken as

中i(R,创=£e佃)[fj (R)缶-g (R) Ki], (j = 1, ..., N) (2) 
J

where R is the coordinate for the relative motion of colliding 
partners and ①/㈣ are the channel basis functions for the 
remaining coordinate space (notice that % are not ortho­
gonal functions but used more widely than the orthonormal 
ones13). The corresponding N independent solutions describ­
ing the motion in the inner region are described by

中 i(R,创=E^B) Xji(R), (3)
j

where the radial functions are obtained by solving, for example, 
close-coupled equations starting from the origin. By impos­
ing the condition that the values of the wavefunctions are 
zero in the origin, solutions are ensured to be the regular 
ones. The wavefunctions (2) in the outer region are then 
determined by the continuous conditions of %(R,曲 and 
their first derivatives at the matching radius Ro. The base pair 
fj(R) and g(R) can be given by analytic formulas for the 
long-range potentials like Coulomb or dipole ones. But for 
the zero field, the pair can only be obtained numerically, for 
example, by the Milne method proposed in Ref. [14].

Though motions are decoupled in the outer region, closed 
channels are still effective and remained in the summation of 
Eq. (2). But in the asymptotic region, the system can no 
longer stay in the closed channels and the contribution of the 
exponentially rising term should be zero. The number of 
independent solutions which remain finite in the whole space 
will be equal to the number of open channels. Let us denote 
the independent solutions as、포p. They can be expressed into 
the linear combinations of the N independent standing wave 
solutions (2) as

포p = E 포,Z,p，cos為 + £ 포,Z,pcos0, (4)
ie P ie Q 

where P and Q denote the sets of open and closed channels, 
respectively,祐 are the eigenphase shifts for the K matrix 
which will be defined later in Eq. (13), and & is the 
accumulated phase shift in the i-th closed channel defined in 
Ref. [14]. The factor cos6p is introduced in two respects: to 
make Zip (i e P) orthonormal and to normalize 포 in energy. 
The factor cos& plays the similar role. Substituting the 
asymptotic forms of the regular and irregular base pair for 
the open channels given by

2 m；
fi(RE긊- sin(W + 孔),

g,(R)—-
쁵 cos (ktR + n), 
까k

(5)

and for the closed channels given by14

一、 / m； , . c -1 k,r c —k,r、

f (R)T --- (sin&iDi e - cos&iDie ),N 지K
,、 / m； , c -1 k,r . c -k,r、

gi(R)T - ----(cos&iDi e + sin&iDie ),
시 兀K

(6)

into Eq. (2) and setting the coefficient of the exponentially 
rising term in Eq. (4) to zero, we get

E (Kj, + tan j”)Z，pcos& + 洪 KjZpeos祐=0,
(J e Q). (7)

Parameters m* hki, and n in Eq. (5) denote the reduced 
mass for the relative motion of photofragments along R 
when the core is in the i-th channel state, the momentum, 
and the phase shifted in that relative motion, respectively. 
The parameters i k in Eq. (6) is the analytical continuation of 
ki in closed channels. For the definition of Di in the same 
equation, see Ref. [14]. From the asymptotic form of 포p :

포p T J £ 岛 %"gR+n+喝), (8)

we have

Z，p = j

E ( Kj -tan為&Npcos 為 + £ K]tZtpcos&t = 0,
i e P i e Q

(J e P). (9)

Eqs. (7) and (9) have a nontrivial solution only when the 
equation

Ko - tanSp Ko

Kc Kc + tan&
(10)

is satisfied. The formulas for Z, are obtained from Eq. (7) 
as
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Z%cos& = - £ (Kcc + ta邱片 KjkTkpeos 喝,(11)
j e Q，k e P

where super-indices are added to indicate to which of open 
and closed channels the row and column indices of the K 
matrix and Z belong. Substituting Eq. (11) for Zip and after 
some manipulations, Eq. (9) can be written into an 
eigenvalue equation for K:

£ KjiTipcos^P = tan為以海布， (12)
i e P

where the K matrix denotes

K = K°° - Koc(Kcc + tan^)-1Kco. (13)

The asymptotic form % is obtained as £ i. e 戸①j( f & - 
gjKj)Tip cosSp, showing that K is the reactance matrix in the 
asymptotic region.

In the multichannel quantum defect theory, the complex 
resonance spectra occurring in the photofragmentation and 
collision processes are explained in terms of only a few 
parameters, the energy-insensitive short-range K matrix, or 
its eigenphase shifts and eigenvectors 卩a and Uia, and the 
long-range quantum defect parameters n and &. The 
complicated behaviors of the spectra are brought about by 
the boundary conditions in the asymptotic region. These 
spectra are described by the incoming wavefunctions T(-) 

(j = 1, ... No) whose forms in the asymptotic region are 
given by

旳J 2 £ J쁘p(E -f-S) (】4)
2ii e P N 지k

and can be obtained by the linear combination of the 
fragmentation eigenchannels 呼p. In Eq. (14), fi denote 
exp(士ikr).

The Phase Renorm지ization

Intra- and inter-channel couplings are usually entangled in 
solutions of Eqs. (7) and (9), or equivalently, of the secular 
equation (10), which makes the identification of the reson­
ance structures in the solutions difficult. Giusti-Suzor and 
Fano5 used the transformation, called the phase renormali­
zation, originally considered by Eissner and Seaton15 for the 
different purpose, to separate out an inter-channel coupling 
from the intra-ones by making the diagonal elements of the 
reactance matrix K zero and thus were able to identify the 
resonance structures clearly. Their work was extended by 
Cooke and Cromer,6 Lecomte,7 Ueda,8 Giusti-Suzor and 
Lefebvre-Brion,9 Wintgen and Fridrich,10 and Cohen.11 
Though their work, especially the one by Lecomte and Ueda, 
is essential in investigating full resonance structures in the 
MQDT formulation, the phase renormalization is enough for 
the purpose of the present work, i.e., of reformulating the 
MQDT into the form of the CM theory. Phase renormali­
zation utilizes the freedom we have in defining basis pairs 

used in Eq. (2). The pair of functions obtained by shifting 
phases in a basis pair defined in the outer region can still be 
used as a basis pair in the same region. The phase 
renormalization may be regarded as being caused by the 
change of potential in the inner region. The potential used as 
a reference in the inner region to define the basis pair in the 
outer region is considered by Mies and named as the 
reference potential.16 If the potential is not taken zero in the 
inner region, the base pair contains the contributions from 
the short-range potentials and the long- and short-range 
contributions are no longer treated separately in the MQDT 
formulation. But still the long-range contributions are absent 
in the short-range K matrix. The change in reference potentials 
brings about the changes in the phase shifts n and 岳, 
defined in Eqs. (5) and (6), by 찌서 as

n = n. + 짜ij for j e P,

B =冉 + 叫j for j e Q, (15)
where the tilde is used to denote new phase shifts. The 
transformations (15) of phase shifts correspond to the 
transformations of the base pairs as

f = f cos nlj - gj sm찌1j,

gj = fj sin짜勺 + gjCOS짜", (16)
and of the N independent standing wavefunctions as

中 i = £ 牛(j 祢-gjKji), 
j

.~ . ■br ~ ― ~ ~
中i = £ Q(fj爲-gjKji), (17)

j

The K matrices and standing wavefunctions are similarly 
transformed as

K = (Ksinn/1 + cosn/1 )-1(Kcos찌丄- sinn/1), (18)
. 一一 

中 = 中(cos 찌1 - svnnjiK), (19)

respectively. Transformation between fragmentation eigen- 
channels 理p and ®pthe asymptotic region defined by

Wp = ■£ %jf cos 為-gj sin 祐)，

Wp = £ <0jTjp(fjcos标-gj.sin<5p) (20)
j e P

will not be considered as it is irrelevant to the present work.
Finally, let us consider the transformation relations bet­

ween S and matrices. For this purpose, it is convenient to 
define a little different incoming wavefunction W(n)j" 

whose asymptotic form is given by

W(n)宀 2 £ 얘扌(e即+螺j - e呻+n0n)ij)

li e P 1 찌勺
(21)
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♦ . 1 r、，1 1 、L) 1 , , ♦ r、 •instead of the usual、포j whose asymptotic form is given 
by Eq. (14). The usual 포(-) can be written as 포(0 )「) 

in this definition and S as S(0). If we consider 포(斤)广) 

corresponding to a new reference potential, its asymptotic 
form will be given by

m/~\(—) 1 v 2m. igR + 沥 u —认kiR + 元)。/~、、 
포(11 )j T 爲 £ p 一「(e & - e S( ”)l})2七 v p M 자，

-1d、 2m* ikiR S -ikiR -i虹勇、、-i j i 1-厂 £ p (e 緡-e e S(1 )l}e J)e
2 li v p M 자i (22)

- 포 (0 )j：~>ei 1j (23)

Eq. (22) yields the transformation relations among various 
scattering matrices

S(0)ij - e「' 1iS( 1 )拼厂希-e「'气S(n)1]e"n, (24) 

and the corresponding ones for these incoming wavefunc­
tions from Eq. ( 23) as

포(0 )j_)- 포(1 尸e-' 1j - 포( n )湼 e' 勺. (25)

If we restrict the number of open channels to two, the 
simplicity of SU(2) algebra allows us to deal with the 
transformation relations among various phase shift matrices, 
the generators of scattering matrices, instead of scattering 
matrices as a whole as will be seen in the next subsection.

A. The transformation of the S matrix by the phase 
renormalization in the two open channel system.

K in Eq. (13) is defined in terms of the submatrices of the 
short-range K matrix which, in turn, is defined with respect 
to the basis pair f, gj in Eq. (17), indicating that it 
corresponds to K( ). It shares the eigenvectors with S( ). 
From Eq. (12), the latter can be expressed as

S ( n )i} - £ 丁^叫等. (26)
p

If we restrict the number of open channels to two, the T 
matrix can be parametrized with one mixing an이e, say 0, 
by

0
T - e^i 郁. (27)

For two open channel systems, the diagonal matrix exp 
(~2i8) can be expressed in terms of the Pauli matrices as

-2i3 e
〃一2ia ne 1 0 -i(& 1 + △心)

- e
0 e*

7

(28)

Substituting Eqs. (27) and (28) for T and exp(-2iS), 
respectively, Eq. (26) becomes 

0 * 0
S (77) - e« e~i 2%eT△辺 ei 2% - e-奄 e-△对 n (29)、，(/ f) e e a e e e e , k匕 y) 

where n is defined as Ry(0)z and equal to z cosO + x sin0.

S(0) is calculated from Eq. (24) by substituting Eq. (29) for 
S( ) and the expression for exp(-i ) similar to that for exp 
(-2iS) as

S (0) - e-您 + 臨 e-' 삌 w" a e 씦 弓

-e「' 0 + n->e-l&S-n / A n %, (30)

where n denotes RZ(An)n. In the same way, S(0) is obtained 
from S( 1 )as

S (0) - e-i(参 + 原)e—iASb n 'eiA 1 %z (31)

where n' denotes Rz( A1) n with n given by Ry(0)z with 
the mixing an이e 0 defined as T - exp(-i 0 %/2). Let us 
rewrite the relations between aind i in Eq. (15) as the
relations between their respective sums and differences as

史 - ^ + 짜处,

An - An + nA卩. (32)

Equating two equations (30) and (31), we obtain

-i(冬 + 如)-iAS%-n' -iA n % -i(& + 如)-iA对 n' -iA 1 %e e e - e e e .
(33)

Taking the trace of both sides of the above matrix equation 
yields

S + ^ - S£ + 如， (34)
which shows that the sum of the eigenphase shifts are 
invariant under the change of the reference potentials. From 
Eq. (34), S£ is related to S as

S£ - S - 짜姓. (35)

The remaining anisotropic part becomes

e~iA8%- n -i as % n'或心％ ee (36)

With %- n' % - [Rz(nA n)n] - exp(-inA n%/2)%- n exp 
(inAn%/2) and A1 - An + 心丄,Eq. (36) can be rewritten 
after some manipulations as

e-iAS%'n'' - e-iASa-ne 祯叩％ (37)

where n'' represents Rz(-nA^)n. Eq. (36) or (37) tells us 
that the new phase shift difference A S1 , which is caused by 
the anisotropic influence of the reference potentials in two 
eigenchannels, cannot be obtained as a simple translation of 
the old AS by nA^ as in Eq. (35) for the eigenphase sum. 
This derives from the fact that the eigenchannels for S( ) 
and the ones for exp(inA^) are of different character. The 
combining rule of AS and nA^ for AS can be obtained at 
first by expressing Eq. (37) into the spherical triangle shown 
in Figure 1 following the rule described in Ref. [2]. Then, 
from the laws of spherical trigonometry, the formulas for the
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Figure 1. The diagram showing the relation between \6 and its 1 ，、 1 A "C" 1 <1 1 ，、，、 1 J ' 1transformed A5 due the change of reference potentials.

(n.).=〈材-Wa)〉〈俨)阿㈠〉=2n ViE. (41)

With Eq. (41) and cot 8 = -2(E-Eo)/r, Eq. (39) becomes in 
matrix form as

S = S0 + (e~2lSr - 1) Son. = S0[1 + (e~2lSr - 1)n.] = S%—2i8rna.
(42)

Let us restrict the number of open channels to two. Let the 
background S0 matrix in Eq. (39) be diagonalized by the 
similarity transformation as S0 = U0 e-2i80(U 0)(T) where U0 is 
a real orthogonal matrix as the unitary S0 matrix is 
symmetric. The S0 matrix may be expressed in terms of 
Pauli matrices as

S0 = U0
(

e~218l 0
、

(U0)(T)
0 e-2l8°

\ 丿

= e—2%%eT 從1 + 사2气捉0% = °t诚1 + 사。%) (43)

new A 8 and 釦 terms of the old ones are obtained as

cosA8 = cosA8 cosnA^ + sinA8 sinnA^ cosQ

Q、 1 z 丄 - AC /cc、cot。= -L；(cos0 cos nA]丄-sin nA]丄 cot A8). (38)sin a

Geometrical Description of the S matrix for the 
System with two Continua and One Discrete State 

in the CM Theory

The form of the S matrix in the neighborhood of an 
isolated resonance in multichannel processes is well-known 
and has been repeatedly derived in the past using various 
resonance theories.17 For the system composed of one dis­
crete state 0 and many continuum wavefunctions \，「(E), 
the S matrix defined by Eq. (14) may be obtained17 as

where n° = Ry(&))z, &三 80 + 80, and A% 三 80- 80. If we 
denote the m-th eigenchannels of S0 as 阳，U^ may be 
considered as the transformation matrix from 卩厂)to 阳. 
The interaction matrices (阳 | H | 0) are real and can always 
be taken to be positive by choosing appropriately the sign of 
Wm at the origin. Let (阳 | H | v) = J「m/2n. Notice that「1 

+「2 is equal to the previously defined r. Then, we have

0、(T) -2i8rnR ,0 -8 + 8。nr)
(U ) e U = e

where n is defined by

with

(44)

nr = Rz (-A02 )Ry(Qr )z
=(sinQcosA02, - sin 0, sin A%, cos Or) (45)

-( 17\
j = £ 斗j,, 8，j + 2无 -E 岩，(39)

j e P \ E - E0- in^kVkE 丿

where Ve denotes (寸「(E)|H 0) and %." is the back­
ground scattering matrix. Eq. (39) is different from that of 
outgoing wave in that i is replaced by -i and adopted here as 
our interests are in the photodissociation processes. 2nLk 
| VkE |2 is the spectral width of the resonance peak and will 
be denoted as r. Eq. (39) can be greatly simplified by 
introducing Fano's ‘a’ state, 俨a(E), defined as

「1-「2 
cos Or 三一J-—, 

.« 사瓦瓦 
sin Or m ■스亍一

Ref. [1] obtained

e~j사2%e—i8。nr =e』8 6 na

where na and 8a are defined by

(46)

(47)

|俨)(E)〉=階 £\w「WjE, 
시r j

n a = Ry(aa) Z，

,o , A 0 Ea — qacot 8a = -cotA12-J=, 
a 12 / 2I p + ] 

시匕a + 1

(48)

(49)

(40) respectively, with qa = - cotQ/cos A% and

and the projection operator Ha = |俨)〉〈卩須)| whose (i, jj 
element is given by

sin A02 0
E - T噸=声(£r Egr). (50)
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With Eq. (47), the S matrix becomes

S =醇 + *5n( U 建=醇 + 6,re*K ,

(51) 
where n： = Ry(0O)na. In Ref. [2], all the procedures 
described so far are shown to be neatly fitted into the 
construction of the spherical triangle shown in Figure 2.

The Solution of MQDT for the System with 
two Open and One Closed Channels

Let us now consider obtaining the solution of the com­
patibility equation (1O) for the system involving two open 
and one closed channels, where the compatibility equation is 
reduced to

Kn-tan6 K^ K”

K12 K22 -tan6 K23 = 0 (52)
K13 K23 K33+ta邱

As is well known cite,18,19 the behavior of the eigenphase 
sum 6s(=6+ + 6-) should be simpler than those of individual 
eigenphase shifts. Let us consider the tangent functions of 
the sum and difference of eigenphase shifts:

tan^ = trK = K°ctrK°o -tr-KocKco) + trKootan/3
1-K Kcc - |K| + (1-|Koo|)tan。(59)

tan 閒=r+으 • (60)

The eigenphase sum 6 of Eq. (59) does not show the typical 
resonance structure. By changing the reference potentials, 
we want it to be given as the form tan 6= -号/tan。, which 
shows the typical resonance behavior as described in 
Appendix A. The corresponding equation to Eq. (59) for the 
new reference potential becomes this form when its 
elements satisfy

tr Koo = 0, Kcc = |K|. (61)

and can be written as a quadratic equation for tan6 as

(tan0 + Kcc)tan26- (tan0 + Kcc)trKtan6
+ |Koo| tan0 + |K| = 0. (53)

Eq. (13) becomes for this three-channel system as

K = Ko - KoK°------------
tan0 + Kcc

(54)

In this case,

tan& = Y /tan。,

where : is defined by

声—tr (K °CK c°)
…口汗

From trK = 0, we have

(62)

(63)

and its trace and determinant are obtained as

trk = k - 金+흐c 
tan。+ K

K = ta爾K°°l니Kl 

tan0 + Kc
(55)

Substituting Eq. (55) for the corresponding terms in Eq. 
(53), we obtain

tan2 6 - trKtan6 + K = 0. (56)

The two solutions denoted as tan6+ and tan6- are obtained 
with the discriminant D [= (trK)2 - 4| K |] as

鼻 trK土 시D
tan6土 = —-2스一, (57)

whereby

tan6+ - tan6- = JD,

tan6+ + tan 6- = trK,

tan6+ - tan6- = K. (58)

K11 = -《22,
|若| = -(I K11|2 + |K1』2 )< 0 (64)

and the square of ^ becomes

】2~2
匕2 K13 + K23 、八 心、

…r+m >0, (65)
where its positive-ness is shown explicitly.

A. The Extraction of CM Parameters from MQDT 
Formulas.

As explained in Appendix A, if 6^ satisfies tan6z = 
-g2/tan。，it shows the identical behavior with the resonance 
eigenphase shift 6, and may be regarded as identical to 6,:

毎=6,. (66)

For convenience, let us call the reference potential in which 
毎 satisfies Eq. (62) the resonance-centered reference 
potential and the representation the resonance-centered 
representation. Let us now examine how other CM 
parameters are assigned to the elements of the K matrix in 
the resonance-centered representation as the result of the 
assignment of 6, to 毎.For this purpose, let us utilize the 
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equality of S(0) given by (51) in the CM theory and given by 
Eq. (31) in MQDT:

/览+以@一后6 n = (袞+农匕一込云6 n%_而% (67)

The above matrix equation holds when isotropic and aniso­
tropic parts of both sides are equal, respectively, as can be 
easily seen by equating the traces of its left- and right-hand 
sides:

& + §r =毎 + n £, (68)

e「'喝 = e^m W心 °z (69)

Because of the equality (66), Eq. (68) yields

環=毎. (70)

Since the left-hand side of Eq. (69) has two parameters, i.e., 
Oa for nfa and Sa while the right-hand side has three 
parameters A^, △〃，and Oor n也ere will be an infinite 
number of ways of making both sides equal. The simplest of 
all will be the one that makes one of two exponential 
matrices on the left-hand side a unit matrix, which can be 
achieved here by setting

An = 0 . (71)

In this setting, n' which is defined as RZ(A n) n becomes 
equal to n . The right hand side of Eq. (69) is now simplified 
as

T^a 6 na = -i A Jo - n (72)

Eq. (72) holds when

na =n, (73)

知=A& (74)

Since vectors nfa and 祐re obtained from the z axis by 
rotating about the y axis by O； and O, respectively, the 
equality of two vectors is produced when Oa = 0. If we 
recall that a projection operator of type (1 + o - n )/2 
generates an eigenchannel of o • n , Eq. (73) indicates that 
both S(0) and S(f]) have the identical eigenchannels.

From Eq. (60), tanAJ is given in terms of the elements of 
the K matrix as JD/(1 + |꺼) and since A <5 is equal to & 
from Eq. (74), we 아iould be able to write JD/(1 + 因) into 
the form in Eq. (49). In order to do this, let us start from 
rewriting the discriminant D using Eq. (55) as

D = [tr(KocK°o)]2-4(K씌tanB+Kb(tanB+Kb
(tanB+ |K| )2

Let D denote D (tanj? + 闵)2. D may be rewritten as

D =- 4 IK oo\ 7、 tan? +
1 + K)쬐 

1KT
( 1-" )2| 러 2

+ —)K쩌「" 써
、2

丿

2 oc~ co 2
+ [tr(K K )].

Using the relation

七K^l K『+ [ tr (K ocKco)]2

— 1 [( 02 *으、k 9 0 0 0 12
------I - o-| [(K13 - K23)K12 - 2K11K13K23] , 

K I

it becomes

D = - FL) J 4| K oo\2 ftanB+LK)| K| 1'
|Koo| 1、2| KoV 丿

+ [(K23 - K23)K12-2K11K13K23]2 I

[(K23 - K；3)K12-2K11K13K23]2 
= ----------------------------------------

K21+ K22

1- .，二2 二 2、2
4 (Ku + K12)x ----------------------------------- )

22 2
-[(K13 - K23)K12 - 2K11K13K23]

f ~ 1 + |Koo|i」|2 ]
x tan? +---------- 1— K + 1"2|Koo| ''丿 J

[(K23 - K；3)K12-2K11K13K23]2, 2

= M &+1)

(76)

(77)

(78)

where & is given by
22

„ _ 2 (K11 + K12)t _ =— - -a .~2 ~2.~ ~~~
(K13 - K23)K12 - 2K11K13K23

f 0 (1 + |K씌)闵)
x tan? - -―--2一一-*)-

、 2(K11 + K12)丿
~2 ~2..~2 ~2.

_ 2 (K11 + K12 )(K13 + K23 )= ----------------------------------------------------------
22 22

[(K13 - K23)K]2 - 2K11K13K23]( 1 + K11 + K12)

x £ r
~2 ~2.~2 ~2.~ 一~ ~ ~i1 一 K11 - K12 (K13 - K23 )K11 + 2K12K13K23 

------- ------------------------------------- ---------- --------------------22 22
2( K11 + K12) K13 + K23 -

(79)

In Eqs. (78) and (79), & and & are used as convenient 
notations for -cotOa and -cot5r, respectively. In the CM 
theory, they are reduced energy parameters and can vary 
from y to 8 only once while in MQDT they undergo such 
a variation repeatedly every time Oa or & increase by n. By 
giving up the meanings of & and & as energies and replacing 
them with -cotOa and -cot5r, respectively, the same CM 
formulas for an isolated resonance can be used for all 
resonances belonging to the same threshold by extending the 
ranges of Oa and & from [0, 찌 to [^, 8]. Then each interval 
[(n—1)n, nn] corresponds to one resonance. Equating Eqs. 
(79) and (50), we obtain
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sin A°2 
— 
sin S

~2 ~2..~2 ~2.
2 (K11 + K12 )(K13 + K23 ) ---- :------ : :------ :— 22 22

[(K13 - K23)K12 - 2K11K13K23]( 1 + K11 + K12)
,(80)

cotA02COS Or=

~2 ~2.~2 ~2.~ 一~ ~ ~
1 - K11 一 K12(K13 一 K23 )K11+2K12K13K23

22
2(K11 + K12)

22
K13 + K23

(81)

From Eqs. (80) and (86), sinOr is obtained as
22

. (K13 - K23)K12 一 2K11K13K23
sin Or  -------- 1 -------------------

二 2 二2 ,二2 二2、
」K11 + K12(K13 + K23)

and cosOr is obtained from Eqs. (81) and (85) as
22

(K13 - K23 )K11 + 2K12K13 K23cosOr =---------- ---------------------------
2 22 2S+ K12( K%+ K23)

(88)

(89)

Both signs are possible for the right-hand side of Eq. (80). 
But the positive sign is not taken as it yields the inconsistent 
result.

Thus far, we considered the numerator of the formula for 
tanAS. Let us next consider its denominator given by 
1+ L히 :

1+|用=-(1 + "?啊+2闵 

tan^+| k|

=I-。11-"%K23-K)K12 - 2K11K13K23]勺-辭-,

2 (K11+ K22) tan^+l K|
(82)

where qa is given by

So far, we found the formulas for the CM parameters S, 
S, and etc. in terms of the elements of the short-range K 
matrix and the long-range parameters n£ and B. Though it 
does not appear explicitly in the formulas of the CM theory, 
O0 is a CM parameter which should be included in the 
theoretical derivation and still remains to be expressed in 
terms of short-range MQDT parameters. This connection 
can be achieved by considering the K matrix without 
including the elements related to the closed channel, which 
will be denoted as K and is given by

( \ ( \
K = K11 K12 = K11 K12

】】 】 】"K12 K22 丿"K12 -K11 丿

Its eigenvalues denoted by tanS0 and tanS0 
obtained as

(90)

are easily

cot Q, --------
0cosA12 tanS0 K21+ K22

1+K21+K22 (K23-K23)K11 + 2K12K13K3 (83)
22 2 2 .

(1—K11-K12 ) (K13 - K23 )K12 一 2K11K13 K23

tanS0 =- K21+ K22 (91)

From Eqs. (78) and (82), we obtain

.A 7、 cot AS =-
1-K21 -K% % - qa 

—- —-
2族《1+ K22底+1

(84)

whereby
cos A02 = 느^. (85)

2】K21+ K22

The sign of the right-hand side of Eq. (84) is not uniquely deter­
mined as it is obtained by taking the square root of the discrimi­
nant D but is taken as minus in order to obtain cotA^ in the 
form of Eq. (85) so that the self-consistency is obtained with the 
convention that sinA^ is positive. From the convention that 
sinA012 is positive for small magnitudes of K matrix elements, 
we have

0 sinA12
2」K21+ K22

1 + K21 + K22
(86)

revealing that S0 = -S0. Therefore we have

(义=0, a5° = 2$； . (92)

Following the previous convention, its eigenvectors may be 
parametrized as (cos O0 /2, sin O0 /2) and (-sin O0 /2, cos O0 /2) 
with

3°
cos--2-- =sign (K12)

30 ( K- O 시 K11sin-2-=----- -2

0 cosA12
1 - K21-K22

----------------
1+ K21 + K22

(87)

/ / ~ o 〜~ 、1/2 
시K11+K12+K11

* 2 J K11 + K12 丿

~ 2 ~ 、1/2
+ K12-K11)

22
* 2 J K11 + K12

(93)

where sign(K12 ) is 1 for positive K12 and -1 for negative 
K12. Let us consider the S° matrix corresponding to K. 
Similar to Eq. (29), it can be written as

3。 $0 $0
F = e^Me~1AS 6 ” = e—‘AS。n, (94)

where S = 0 is used. Inserting 쥐。, AAn 0, and nf=it 
into the background form of Eq. (31) and then equating it 
with the one in Eq. (43), we have
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s0 (0) = e-'^eT 사26 n。= eT 底 e-' 服“. (95)

The equality of the trace of both sides of the matrix equation 
(95), which is isotropic to channel interaction and given by 
& =血,is consistent with the previous (70) and, from the 
remaining anisotropic part to channel interaction, we obtain

A02 =冨# = 2<5i, (96)

00 =冰 (97)

In terms of Pauli matrices, eigenphase shifts, and mixing 
angles, K can be rewritten as

00 0 A
K = tan<51 a - [Ry(印)z] = tan-^a- [Ry(0。)z], (98)

K 13
E 1 _ …~

—으甘 cos-- (0r + 00 ), K23 =
A12 2cos---2--

E 1
—을-0-S叫 (0r + 00 ).
A12 2cos---2--

(104)

Only /among the elements of the matrix remains 
unexpressed in terms of CM parameters while expressions 
for the others are given by Eqs. (99) and (104). Its 
expression is easily obtained from K33 = |k| as follows

闵=
22

(K13 一 K23 )K11+2K12K13K23 —
0

2 A12
=E tan-2-cos 0r.

1+*+ K22

(105)

The final expression for the short-range K matrix can be 
written as

from which we have

0A12
Ku = -K22 = tan-2-cos00,

0A12
K12 = tan----sin00. (99)

K =

—E-0-sin2(0r+00) 
A12

,A02 c 

tan----cos00

,A02 . c 

tan--^sin00

A° A12 
tan----sin00

,A02 c

—tan----cos00

Eqs. (93) and (97) yield
cos|(0r+00)

芹 1 、—--0-cos；-(0r+00)

A12cos-2-

—EArsin|(0r+00)

cos-22

戸 2 A?2 Q
E tan---cos0r

匕
cos-2-

K 11 
cos 00 =- —

后I葛

sin00 = - K12
応3歸

(100)

Substituting Eq. (100) into Eqs. ( 89) and (88), we obtain

A K23 - K；3 A , 2K13K23 ..
cos 0r = —------—cos 00 + —-------—sin 00,

<2 <2 c< <. K13 - K» . 2 K13 K23 n z1A1Asin 0r = —=2----—sin 00 + 二三---—cos 00 (101)
K13 + K23 K13 + K23 

and accordingly

源 <2
-23 -23 = cos (0r + 00),
K13 + K23 

2K13 K23 -----------
22

K13 + K23
=sin(0r + 00) (102)

and finally 

7==- = cos2 (0r + 00), --== = sin2(0r + 0O)
JK13 + K23 JK13 + K23

(103)

are obtained. Substituting Eq. (65) and K21 + K22 = tan2A02 

/2 obtained from (99) into Eq. (103), K13 and Ke 
expressed completely in terms of CM parameters as

(106)

Originally 6 parameters are needed to describe the short­
range K matrix due to its symmetric nature. The two 
conditions (61) for the resonance-centered representation 
restrict the number of independent parameters to 4. In Eq. 
(106), three CM parameters A12,00, 0r and one short-range 
parameter E represent those four independent parameters.

Long-range parameters n and /ire related to the CM 
parameters as

.~ -An = 0,
0n e =买,

E2 ta邱=- 스&. (107)

In the above, we obtained the representation, called the 
resonance-centered representation, where behaviors of 
eigenphase shifts show those of the eigenphase shifts in the 
configuration mixing theory, 아ichas -cot <5 e = tan/E2 and 
cot A< = -cotA 12(£a-qa)/J%+1. So far, we did not 
mention about how we can obtain this representation from 
the given representation using the transformation (15), i.e., 
what are the values of 関，卩2, and 卩3 or equivalently 佬,A卩, 
and 卩3 which give the resonance-centered representation. 
One of them, A卩,is obtained as -A〃/n from An = 0 and 
A< = An+nA卩.The procedure of obtaining the remaining 
^3 and 佬 is lengthy and given in Appendix B. The results 
are reproduced here
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tan2 nu 3 =

2 (trKoo[ Kcc trK。。- tr (KocKco)]
+ (1--K찌)(Kcc--K|)}

(trK°°)2 - [KcctrK°° - tr(KocKco)]2'

+ (1-|koo| )2-(Kcc - |k I )2

(108)

(& and & are not the usual energy parameters but are used 
here as convenient notations as mentioned before). When 
Eq. (112) is substituted, the last factor of the right-hand side 
of Eq. (110) becomes

tan2 njiY =

2(( 1-\Koo\) tr K°o + [ KcctrK。。- tr (KocKco)] 
x( Kc이 K|)]}

(1-|Koo| )2 + (Kcc - \k I )2-(trK。。)2 
-[KcctrK°° -tr(KocKco)]2

(109)

The origin of the Lu-Fano plot of (0,毎)is moved to a new 
position by the shifts given by ( 찌払, 찌处) in Eq. (109) so 
that the plot (及 毎)becomes symmetrical in the new 
coordinate system.

cos2 (茶 + 8a) for p=1,

cos2。或)for p=2.
(113)

By Delambre's analogies among the half-an이e formula of 
spherical trigonometry,20 we have

sin2 (어. - 어)

-------- 1----

sin2 어。

cos* _ sinA^sin어a

tan^+ |K| *n⑹-印)

cos2 (Sr + 毎)
1 A。 cos-2-A12,

The contribution of the closed channels

When the system is in the p-th fragmentation 
eigenchannel, the system is described by the wavefunction 
Wp =乙.G p^iZipCosPp, where 如 is the probability 
amplitude that the system is found in the i-th stationary state 
W. and cnorpalizes peW,unit energy. The

probability amplitude that the system is in the i-th open 
channels is described Ty . SiiTp is orthogonal, the
flux of particles in collision is conserved. This should be so 
as the wavefunctions describing closed channels become 
zero at the asymptotic region. Though the presence of the 
closed channels do not affect the flux, it affects the collision 
by delaying the process as the particles are trapped there for 
some time. Here we want to find out how long the collision 
system will stay in closed channels when the system is in the 
p-th fragmentation eigenchannel.

The probability amplitudes Zi p for the system in the 
closed channels are given by Eq. (11). In the present case, 
only one closed and two open channels are involved. If we 
use indices 1 and 2 for the open channels and 3 for the 
closed one, the probability amplitudes are simplified as:

cos<?p= ___o_ 、「二二ZapCOS0 —£ K3kTkp ~ I ~」.
k tan0+ |K

»2_,1From Eq. (105) and tan0 = ?&, the denominator of the
right-hand side of Eq. (110) becomes

tan0+ |K| = 터，+ tan2 A^cos 어 J.

(110)

(111)

If we substitute & sin 어尹/sin A% + cot A% cos 어r for & and 
make use of & = -cot 어a, Eq. (110) becomes

tan0 + |K| =----- 2-------sin(어a - 어),
sin A22sin 어.

(112)

cos2 (Sr -8a )=
cos2 (어 - 어)
---------1-------

cos2 어。

1 A0 cos2 A12. (114)

Entering Eq. (114), Eq. (113) becomes

cos&
cosgA^sinA^sin 어a

tan0 + K gsin(어厂어)

sin；( 어Tr)
------- 1------

s"

cos2(QTr)
--------1------

cos2 어。

for p=1,

for p=2.

2、蜒抑 어a

gsin %

sinSrcosgA%

——?一i

1cos2 어，
1 for p=1, 

cos2( 어a-어)

1sin2 어f 

E for p=2.

1cos2 어f 
--------------  for p=1, 
cos2( 어a-어r)

1sin2 어f

s站顽 for p=2.

(115)

By Eq. (104) and T = exp [-i(仇 + 어))。財2], the first factor 
of the right-hand side of Eq. (110) becomes

^£ K^kTkp =---- -----
k 1 A0
k cos--A122 12

cos：(어a - 어) for p=1, 
] (116)

-sin2(어a - 어) for p=2.
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Using Eqs. (115) and (116), Eq. (110) is simplified as

~ 为 sin8r
Z 3pcos# = —-----

쎠% for p=1, 

sin； % for p=2.
(117)

From Eq. (62), we obtain easily

(118)

(the convention that & increases from zero as B increases 
from -n/2 is adopted here, which implies that sindcos B > 0 
or cos^sinB < 0). Entering Eq. (118) into Eq. (117), we 
obtain the formula for Z3p:

Z3p

쎠% for p=1, 

sin； % for p=2.
(119) Figure 2. The spherical triangle formed by the three vectors z, nr 

and na.

£ Z2 (120)

becomes

and the following equation is easily derived:

dSr -—----
P P dfU

Eq. (120) shows that though the interaction 
complicated as the number of involved channels changes 
from one open and one closed channels to two open and one 
closed channels, the total time for which the system stays in 
a close channel remains the same. The total time delay due 
to a closed channel does not depend on the characteristics of 
systems. The characteristics of systems appear when we 
consider the branching ratio of the probability amplitudes for 
a closed channel to decompose into open channels. This 
ratio is determined by the transformation matrix between 
fragmentation eigenchannels and resonance ones described 
by the mixing an이e 场 defined in the spherical triangle of 
Figure 2. That is, it is purely determined by geometry.

Photofragmentation cross section formulas

In the photofragmentation processes, the final state is 
described by the incoming wavefunctions. Let us denote 
them as W(-). They are obtained from the fragmentation 
eigenchannel wavefunctions Wp or from the short-range 
standing-wave channel wavefunctions Wi as

电㈠=£电/席=£ W,[Tcos頷疔T(T)]V 
p i e P

~ _L. 〜 ~~ -i^ (T)
+ £ Wi[cosBZe T )]i. (121)

i e Q

We note the following matrix relations
，一、 -

TcosBe「咛 ) = (1 + iK)-,

、一 1 -
cos^ZelST{ ) = -(tanB + K*) Kco(1 + iK)- . (122)

It may be more natural to expand physical incoming wave­
functions with incoming-wave channel basis functions. 
Using the transformation relation

W i = £ W H( 1+ iK)ki (123)
k

between the short-range incoming- and standing-wave channel 
basis functions and after some manipulations, we get

电㈠=W^+ £ Wk-)(tanB + i)(tanB+ K)-1
k e Q

x Kco (- i + Koo )T, (124)

ccwhere k is defined by

~cc 2 cc 2 co ~ oo T~ oc
k = K -K (- i + K ) K , (125)

which is the one considered by Lecomte but differs from his 
by complex conjugation.7 Let us now limit the discussion to 
the two open and one closed channel case. Then K 
becomes -i号 and we have the following identity

tan B + i ------------  
tan/? - i^

i -i(B+ 布)-- e (126)

With it, Eq. (124) may be rewritten as

W(-) _ W(-) i W ㈠前+ 8r) 1/2「好七，. + 诺。、-1Wj = Wj -日 W3 e [K (- i + K ) ]3j.

(127)

Now it is convenient to introduce new short-range wave­
functions M ) and ijlined by
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MM-) =区㈠ + w 3-)[ Kco (- i+Koo )-1 ]3j,

N㈠=w「)_4w3-)[K(- i + K)-1]3j. (128)
r

With these functions, the square of the modulus of the 
transition dipole moment can be expressed into the Beutler- 
Fano formula given by

示(-)2 面(_)|저 .、2 /计-)|저 .、2 tan®/S +qJ o、 \DJ I = |(W/ IT；)\ = 1(M1 \Ti)1 1一一2- 4-\ , (129) 
tan ®/g +1

with the complex line profile index defined by

~ (―)I 一I~ = .(N:」加 
q "Ti) (130)

More detailed analysis of Eq. (129) can be done with the 
help of the transformation considered by Lecomte and Ueda 
and will be treated in the separate paper.

to energy. Modifying Eq. (59) as

tr K°o
tan8y =---- ----- -

1-KT

trK。。(IK씨Kcc - K) + tr(K"K。)(1 - \koo\) ,A1.
------------------------------------------------- (A1)、
(1-K 쩌 e®+K구쓰

7

and differentiating with respect to §, we obtain

2 L d8y
(l+tan 号)-d® =

trK°°(IKoo|Kcc - K) + tr(K"K°)(1 -〔Koo|)(1 + tan2®) 

(1니 쓰 叫 “쓰그쓰

、2

(A2)
7

where the explicit formula for the first factor of the left-hand 
side is given by

Summary and Discussion 1 +tan2 毎=

We reformulated the MQDT formulation into the form of 
the CM theory by using the transformation considered by 
Giusti-Suzor and Fano in order to clearly identify the 
resonance structures. The transformation moves the axes of 
the Lu-Fano plot so that the curve (旗 8^) becomes 
symmetrical. But the short-range reactance matrix K 
obtained is not a form considered by Giusti-Suzor and Fano, 
i.e., its diagonal elements are not zero. It means that the 
intra- and inter-channel couplings are not fully separated yet 
though the resonance position is centered in the Lu-Fano 
plot. In the two channel case, to make the Lu-Fano plot 
symmetric is equivalent to the complete deparation of intra- 
and inter-channel couplings. But this is no longer true with 
more than two channels. In order to achieve that, we have to 
introduce the orthogonal transformation as well as the phase 
renormalization as done by Lecomte and Ueda. Therefore, 
this work should be regarded as a basis for the full 
investigation of the resonance structures in the MQDT 
formulation. The full investigation will be published as a 
separate paper.

+ tan®

'tan® + K：二因

V
.T,ootrK
回灵

、2

1-|ko。

丄 KcctrKo°-tr(KoKc)
+ -----------------

7
2

1 - \k°o\

Vtan® +K구K 2

7

(A3)

The numerator of Eq. (A3), when organized with respect to 
tan ®, becomes

(1-K\)+(trK) {[tan® + 说(kc)]2+[笆(Kcc)]2},

(A4)
(1-KT )2

where explicit formulas for fR(xcc) and ^(xcc) are given by

^(Kcc)=
(K" 一 K )(1- |koo| ) + trKoo[K"trK° 一 tr(K"K°)]
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(1 - \koo\ )2 + (trK。。)2

筈(K穴)=
(K" - |K| )trK°°-[KcctrK。。- tr(KoK°)](1 -〔Koo|)

(1 - KT )2 + (trK°)2
(a5)

Substituting Eq. (A3) for 1 + tan2 8^, Eq. (A2) becomes

Appendix A: The differentiation of the phase shifts with 
respect to energy

d8£ — 
d®

H(Kcc)(1 + tan2®)
[tan® +说(Kcc )]2 + [笆(Kcc )]2'

(A6)

Let us calculate the first derivative of Eq. (59) with respect ^(xc，c) is negative as can explicitly be shown as
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筈(K穴)=
_  ― ― ― , 2
(K11K23- K12 K13)

+ (K22K13 - d)2 + K23 + 电
—--———--————-———-----——---———---———

(1 - KT )2 + (trKo)2

and becomes equal to -? of Eq. (63) when tr(Koo)=0. Eq. 
(A6) tells us that the derivative of the eigenphase sum with 
respect to energy is always positive. Even individual 
eigenphase shift should have a positive derivative with 
respect to energy according to Macek's formula.21

Eq. (A6) can be rewritten into a Lorentzian form as

d冬 = 1
/ 八 一 cc、 / cc、2

丿 tan0 +아1(k ) tan0+아1(k ) , 1
d ------ ---------- ----- + 1I -筈©丿I -筈K)丿

From Eq. (A8), the inflection point of the curve & vs. tan。is 
obtained as tan。= 一아t(K°c), which is different from the pole 
position of tan& given by tan。= -(Kcc-|K|)/(1 -K°o) in Eq. 
(A1). Two positions becomes equal to -아XK1。) by setting 
tr(Koo) to zero. If we further set fR(Kc，c) to zero, the graph of 
& enjoys the same behavior as that of & in the CM theory 
for isolated resonances if tan。/^2 is identified with -1/&. 
Then we may set & = & to make the MQDT formulation 
look like the CM one.

Appendix B: The phase shifts which yi미d the resonance­
centered representation

First of all, 시丄(= 卩 1-卩2) is obtained from (71) and (32) as

冗財丄 = -시门. (B1)

The remaining two parameters might be directly obtained 
from the relation (18) between K and K but the easier way 
of obtaining them is to make use of the invariance of the 
functional form (59) of tan& under the change of the 
reference potentials. The invariance is the result that no 
condition on the reference potentials are applied when Eq. 
(59) is derived. From this invariance, tan^z is given by

Kcctrk00 - tr(Ky) + trKo°tan。 皿、
tandz =-----------— --------产一一;---- -- --. (B2)

Kcc - I刑 + (1-K쬐) tan。

Using the relations & = 海-짜处 and。=。+ 찌丄3, Eq.
(B2) becomes

tan(毎-n处)=
cc oo oc co oo

K trK -tr(K K ) +trK tan(。+ 찌丄3) 93)
K - |K| + (1- |Koo|)tan(0+ 찌丄3)

which can be transformed into the following by making use 
of the tangent law:

tan冬— tannMz _ / + Btan。

1 + tan5ztannu z C + Dtan。
(B4)

where A, B, C, D are defined as

cc oo oc co oo
A = K trK -tr(K K ) +trK tann^3,

B = trK"-[KcctrK00 -tr(KK)]tann%,
C = Kcc-|K + (1 - "【씨)tannu3,

D = 1-1K씌 - (I【씌 一 闵)tannu3. (B5)

When Eq. (B4) is solved for tan&, it becomes

(A8)
tan 毎=

(A + Ctannuz) + (B + Dtannuz)tan。

(C -Atannuz) + (D - Btannuz)tan^" (B6)

Equating two equations (59) and (B6), we obtain the 
relations containing the proportionality constant k as

[Kcc tr Koo - tr( K °oK c°)] + trK" tannu 3
+ [Kcc- |k| + (1 - \k°°\)tannu3] tannuz

=k[KcctrK00 - tr(K°CKc°)], (B7)

trK"- [KcctrK°° - tr(K°K)]tannu3
+ [ 1-|K°°\ - (K - |K|)tan nu3 ] tan까处 = ktrK°° ,
~ 序. (B8)

K - |k| + (1 - |k씨)tannu3

-([ KcctrK°° - tr( K^K)] + tr K °° tan nu 3} tannuz

=k(Kcc - K), (B9)

(1 - K°°|) - (K - |K| )tannu3

°° cc °° °c c°
-(trK -[K trK -tr(K K )]tannu3}tannuz

= k(1 - |k쩌). (B10)

If we introduce p, q, r, s for convenience as follows

p = tr K°° + [ KcctrK°° - tr( K°cKc°)],

q = trK°° - [KcctrK°° - tr(K°cKc°)],
r = 1 - |K°°| + (Kcc - |K|),

s = 1 - \K°°\-(Kcc - |K|), (B11)

we can express the sum and difference of Eqs. (B7) and (B8) 
and also the same ones for (B9) and (B10) in terms of them 
as

1 tannu 3 tannuz tannu gnnuz
C-'\ 
P

—tannju 3 1 -tannu 3tannuz tannuz q
-------------- -- -tan nugnnuz 1 tannu 3 r

tannu atannuz —tan兀1丄£ —tan nu3 1 / s 7

p
=k q . (B12)

r
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Eq. (B12) is inverted as

p
q
r

V s丿

T 짜丄 3 ^y cos 찌处 e
_' 자丄 3 % sinn/1 ze y

. T 자丄 3 %y-svnnji z e y

T 짜丄 3 by 
cos 찌处 e y

)p

,
丿

V s丿
(B13) 

where the new proportionality constant k is related to k as k 
=k cosnji3 cosn所.The proportionality constant may be 
determined from the relation between K and K but the 
determination requires a long tedious derivation. Eventually 
it can be shown that k is equal to 1/| K sin짜£ + cosnji |.

Eq. (B13) holds for any arbitrary reference potential. In 
the resonance-centered representation where we have tr K°° fCC
=0 and K = |K |, p, q, r, and sre related as p= - q, r
=s. When the latter relations are applied to Eq. (B13), we 
have 

cosn姒pcosn#3 - q sinn£3) - sinn/j^(rcosn/i3 - s sinn£3)
=-cosn所(psinn#3 + qcosnji3) + sinn所(rsinw + s cosnji3) 

(B14)

and

sinn所(pcosn#3 - q svnnji3) + cosn所(rcosn#3 - s sinn£3)
= sinn妃psinw + qcos짜R + cosn/J^(rsinn/i3 + s cosnji3).

(B15)

Dividing Eqs. (B14) and (B15) by cosnji3 and cos짜坛 
respectively, and collecting the terms for tan 짜！为 we obtain

p (1 +tann£3) + q (1 - tan n£ 3)
tang = —- ------------ -- - - --- :----------二r (1 +tann£ 3) + s( 1 - tann£ 3)
, -r (1 - tan n/z 3) + s (1 + tann/Z3)
tann心 = —  -------- -— --------—. (B16)

乙 p( 1 -tann/3)-q( 1 + tan n/ 3)

By equating the above equations for tann/乙，we obtain the 
formula for tann/3 as

tan2 n/ 3 =
2(trK°°[KCCtrK°°- tr(KocKco)] + (1-K쪄)(KCC- K)) 
— 
(trK。。)2 - [，履气质。- tr(KocKco)]2+(1- K쪄)2(K°C- 因)2

(B17) 

In the same way, dividing Eqs. (B14) and (B15) by cosn/3 

and cosn乙，respectively, and collecting the terms for 
tann/3, we obtain the formula for tann/乙 as

tan2 찌丄乙 =
2[(1- K쪄凡或。+ (KCCtrK°°- trCLKTcK"- KI)] 

----------------------------------------------------------------------- . 
(1- K쩌)2 + (Kcc- K)2 - (trK") - [K°CtrK°o- tI(K°CKC°)f

(B18)

In the two channel system, general resonance phenomena 
are described by the Lu-Fano plot which can differ from 
system to system in the position of the inflection points 
described by /1 and /2 and in the amplitude of the curve 
determined by the interchannel coupling strength & In the 
system with two open and one closed channels, two more 
parameters △】？ and Q are needed to describe the coupling 
between two curves (P,易)and (方，易)in the Lu-Fano 
plot and the relative coupling strengths of two open channels 
with a closed channel, respectively, besides three parameters 
(/1, /2,鸟 in the two channel system.
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