• Title/Summary/Keyword: Synthesized powder materials

Search Result 786, Processing Time 0.04 seconds

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

Fabrication of Nano-sized Titanate Powders by an Ethylene Glycol Solution Route

  • Lee, S.J.;Lee, M.J.;Yoon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.440-441
    • /
    • 2006
  • Several titanate powders ($Al_2TiO_5,\;SrTiO_3$, etc.) were synthesized by an ethylene glycol solution route. Titanium isopropoxide and nitrate salts were dissolved in stoichiometric proportions in liquid-type ethylene glycol without any precipitation. The parent precursor sols were dried to porous gels, and then the gels were calcined and crystallized. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after a simple ball-milling process. A three-component PZT $(Pb(Zr_{0.52}{\cdot}Ti_{0.48})O_3)$ powder was also synthesized successfully by the ethylene glycol method. In this study, the characteristics of the multi-component titanate powders by the ethylene glycol method are examined.

  • PDF

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

Morphological Change and Luminescence Properties of ZnO Crystals Synthesized by Thermal Evaporation of a Mixture of Zn and Cu Powder (Zn과 Cu 혼합 분말의 열 증발에 의하여 생성된 ZnO 결정의 형상 변화 및 발광 특성)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.578-582
    • /
    • 2018
  • ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at $1,000^{\circ}C$, while tetrapod-shaped ZnO crystals begin to form at $1,100^{\circ}C$. The wire-shaped ZnO crystals form even at $1,000^{\circ}C$, indicating that Cu acts as a reducing agent. As the temperature increases to $1,200^{\circ}C$, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from $1,000^{\circ}C$ to $1,200^{\circ}C$. For the ZnO crystals synthesized at $1,000^{\circ}C$, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at $1,100^{\circ}C$. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at $1,200^{\circ}C$.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties (Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성)

  • Park, Sang-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

Fabrication of Nanostructured $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ Composite by Pulsed Current Activated Sintering from Mechanically Synthesized Powder (기계적으로 합성한 분말로부터 펄스전류 활성 소결에 의한 나노구조 $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ 복합재료제조)

  • Park, Na-Ra;Song, Jun-Young;Nam, Kee-Seok;Shon, In-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.149-154
    • /
    • 2009
  • Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ composite was consolidated from mechanically synthesized powders by pulsed current activated sintering method within 1 min. $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ powder was synthesized from 3CuO and 2FeAI using the high energy ball milling. Dense $5Cu_{0.6}Fe_{0.4}-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Mechanical properties and grain size of the composite were investigated.

Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver (저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구)

  • Joo, Soyeong;Ahn, Nak-Kyoon;Lee, Chan Gi;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere (대기 분위기의 알루미나 도가니 내에서 Zn 분말의 산화에 의해 합성된 ZnO 나노분말)

  • Lee, Geun-Hyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.861-866
    • /
    • 2010
  • Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.