DOI QR코드

DOI QR Code

Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties

Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성

  • Park, Sang-Jun (Department of Materials Engineering, Graduate School of PaiChai University) ;
  • Lim, Dae-Young (Department of Materials Science & Engineering, PaiChai University) ;
  • Song, Jeong-Hwan (Department of Materials Science & Engineering, PaiChai University)
  • 박상준 (배재대학교 대학원 재료공학과) ;
  • 임대영 (배재대학교 신소재공학과) ;
  • 송정환 (배재대학교 신소재공학과)
  • Received : 2017.08.07
  • Accepted : 2017.08.22
  • Published : 2017.09.27

Abstract

ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

Keywords

References

  1. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Prog. Mater. Sci., 56, 175 (2011). https://doi.org/10.1016/j.pmatsci.2010.10.001
  2. D. R. Frankle, Phys. Rev., 111, 1540 (1958). https://doi.org/10.1103/PhysRev.111.1540
  3. H. Katayama, S. Oda and H. Kukimoto, Appl. Phys. Lett., 27, 697 (1975). https://doi.org/10.1063/1.88350
  4. S. Sahare, S. J. Dhoble, P. Singh and M. Ramrakhiani, Adv. Mater. Lett., 4, 169 (2012).
  5. A. Fujii, H. Wada, K. I. Shibata, S. Nakayama and M. Hasegawa, Proc. SPIE-The International Society for Optical Eng., 4375, 206 (2001).
  6. Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu and C. Wang, Appl. Phys. Lett., 90, 042109 (2007). https://doi.org/10.1063/1.2432278
  7. S. K. Mishra, D. Kumar, A. M. Biradar and Rajesh, Bioelectrochemistry, 88, 118 (2012). https://doi.org/10.1016/j.bioelechem.2012.07.006
  8. Y. Kim, S. J. Kim, S. P. Cho, B. H. Hong and D. J. Jang, Sci. Rep., 5, 12345 (2015). https://doi.org/10.1038/srep12345
  9. A. Tiwari and S. J. Dhoble, RSC Adv., 6, 64400 (2016). https://doi.org/10.1039/C6RA13108E
  10. M. M. H. Farooqi and R. K. Srivastava, Mater. Sci. Semicond. Process., 20, 61 (2014). https://doi.org/10.1016/j.mssp.2013.12.028
  11. K. Hedayati, A. Zendehnam and F. Hassanpour, J. Nanostruct., 6, 207 (2016) https://doi.org/10.1007/s40097-016-0189-y
  12. N. I. Kovtyukhova, E. V. Buzaneva, C. C. Waraksa and T. E. Mallouk, Mater. Sci. Eng. B, 69-70, 411 (2000). https://doi.org/10.1016/S0921-5107(99)00312-8
  13. H. Wu, Q. Wang, Y. Yao, C. Qian, X. Zhang and X. Wei, J. Phys. Chem. C, 112, 16779 (2008). https://doi.org/10.1021/jp8069018
  14. J. Z. Liu, P. X. Yan, G. H. Yue, L. B. Kong, R. F. Zhuo and D. M. Qu, Mater. Lett., 60, 3471 (2006). https://doi.org/10.1016/j.matlet.2006.03.034
  15. J. Li, Q. Zhang, L. An, L. Qin and J. Liu, J. Solid State Chem., 181, 3116 (2008). https://doi.org/10.1016/j.jssc.2008.08.009
  16. T. T. Q. Hoa, L. V. Vu, T. D. Canh and N. N. Long, J. Phys., 187, 012081 (2009).
  17. J. Y Park, D. Y. Choi, K. J. Hwang, S. J. Park, S. D. Yoon, Y. H. Yun, X. G. Zhao, H. B. Gu and I. W Lee, J. Nanosci. Nanothechnol., 15, 5224 (2015). https://doi.org/10.1166/jnn.2015.10374
  18. H.-S. Kil, Y.-J. Jung, J.-I. Moon, J.-H. Song, D.-Y. Lim and S.-B. Cho, J. Nanosci. Nanotechnol., 15, 6193 (2015). https://doi.org/10.1166/jnn.2015.10430
  19. J.-H. Ryu, K. Phimmavong, D.-Y. Lim, S.-B. Cho and J.-H. Song, Ceram. Int., 42, 17565 (2016). https://doi.org/10.1016/j.ceramint.2016.08.070
  20. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, Angew. Chem. Int. Ed Engl., 44, 1269 (2005). https://doi.org/10.1002/anie.200462057
  21. L.Yin, D. Zhang, D. Wang, X. Kong, J. Huang, F. Wang and Y. Wu, Mater. Sci. Eng. B, 208, 15 (2016). https://doi.org/10.1016/j.mseb.2016.02.004
  22. F. Chen, Y. Cao and D. Jia, Ceram. Int., 41, 6645 (2015). https://doi.org/10.1016/j.ceramint.2015.01.111
  23. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.167-171, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA (2001).
  24. R. Kripal, A. K. Gupta, R. K. Srivastava and S. K. Mishra, Spectrochim. Acta Part A, 79, 1605 (2011). https://doi.org/10.1016/j.saa.2011.05.019