• Title/Summary/Keyword: Synthesis in water

Search Result 1,347, Processing Time 0.053 seconds

Synthesis and Characterization of 14-Membered Tetraaza Macrocycles with N-Ethyl Groups and their Nickel(Ⅱ) and Copper(Ⅱ) Complexes

  • Kang Shin-Geol;Kweon Jae Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.256-259
    • /
    • 1992
  • The 14-membered tetraaza macrocyclic ligand 1,8-diethyl-5,12-dimethyl-1,4,8,11-tetraazacyclote tradeca-4,11-diene(B) can be synthesized as its dihydroperchlorate salt by the one-pot reaction of 2-ethylaminoethylamine, methylvinyl ketone, and perchloric acid in absolute ethanol. The reaction of Ni(II) or Cu(II) ion and the salt yields $[M(B)]^{2+}$ (M = Ni(II) or Cu(II)), which reacts with $NaBH_4$ to produce $[M(D)]^{2+}$ (D = 1,8-diethyl-5,12-dimethyl-1,4,8,11-tetraazacyclote tradecane). The complexes $[M(L)]^{2+}$ (L = B or D) have planar geometry and contain two ethyl groups at the donor nitrogen atoms of the ligands. The red solids $[Cu(B)](X)_2(X)$ = $ClO_4-$ or $PF_6^-$) react with water molecules of atmospheric moisture to produce the purple solids in which water molecules are coordinated to the metal ion. Synthesis, characterization, and the properties of the new N-ethylated macrocyclic ligands and their Ni(II) and Cu(II) complexes are reported.

Anticariogenic Properties of the Ethanol Extract of Pomegranate (Punica granatum) Husk (석류피 에탄올 추출물의 항치아우식 활성)

  • Yu, Yong-Ouk;Yu, Hyeon-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.199-203
    • /
    • 2007
  • Dental caries is a major worldwide oral disease problem. Streptococcus mutans (S. mutans) plays an important role in the information of dental plaque and it is being noticed as major causative bacteria of dental caries. Therefore, the development of more effective, substantial and safe preventive agents against dental caries is strongly required. In the present study, inhibitory effects of the ethanol extract of the husk of pomegranate (Punica granatum L.) on the growth, acid production, adhesion and water-insoluble glucan synthesis of Streptococcus mutans (S. mutans) were examined. The ethanol extract of pomegranate husk (250 - 4000 ${\mu}$g/ml) significantly lowered the growth of S. mutans in a dose dependent manner. The acid production of S. mutans were inhibited by the presence of ethanol extract of pomegranate husk (500 - 4000 ${\mu}$g/ml) significantly. The ethanol extract of pomegranate husk (5000 - 4000 ${\mu}$g/ml) also significantly lowered the adherence of S. mutans. In water-insoluble glucan synthesis assay, 1000 - 4000 ${\mu}$g/ml of the ethanol extract of pomegranate husk significantly inhibited the formation of water-insoluble glucan. These results suggest that pomegranate husk may inhibit the caries-inducing properties of S. mutans. Further studies are necessary to clarify the active constituents of pomegranate husk responsible for such biomolecular activities.

Synthesis of High Purity Nano-Silica Using Water Glass (물유리를 이용한 고순도 나노실리카 제조)

  • Choi, Jin Seok;Lee, Hyun-Kwuon;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

Synthesis of TiO2 nanoparticles using Water-in-oil microemulsion method (유중수형(油中水型) 마이크로에멀젼법을 이용한 타이타니아 나노입자의 제조)

  • So Min Jin;Hyeon Jin;Seong Ju Kim;Yu Na Kim;Dae-Won Lee
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • TiO2 is a versatile metal oxide material that is frequently used as a photo-catalyst for organic pollutant oxidation and a functional material for ultraviolet-ray protection. To improve its chemical/physical properties and widen the range of industrial application, it is demanded to control the crystalline feature and morphology precisely by applying advanced nano-synthesis methods. In this study, we prepared TiO2 nanoparticles using the water-in-oil (W/O) microemulsion method and compared them with the particles synthesized by the conventional precipitation method. Also, we tried to find the optimum conditions for obtaining nano-sized, anatase-rich TiO2 particles by the W/O microemulsion method. We analyzed the crystalline feature and particle size of the prepared samples using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). In summary, we found the W/O microemulsion is more effective than precipitation in obtaining nano-sized TiO2. The best result was derived when the microemulsion was formed using AOT surfactant, hydrolysis was performed under basic condition and the sample was calcined at 200℃.

Synthesis of Mullite from Kaolin by Seed Addition Method (Kaolin으로부터 Seed 첨가법에 의한 Mullite 합성)

  • 김인섭;박주석;이명웅;이병하;소유영
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.878-884
    • /
    • 1998
  • Synthesis of high purity mullite from korean resourceful kaolin and water-soluble aluminium salts was in-vestigated by addition of mullite seed. Single phase of mullite was formed at 1350$^{\circ}C$ however its mullite con-tent was 31-33% Maximum content of mullite synthesized from kaoin aluminium nitrate and 8wt% mul-lite seed was 98% at 1600$^{\circ}C$ for 4 hours.

  • PDF

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Visible Light-based Photocatalytic Degradation by Transition Metal Oxide (전이 금속 산화물을 이용한 가시광선 기반 광촉매 분해)

  • Lee, Soomin;Park, Yeji;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.299-307
    • /
    • 2019
  • Photocatalysis is an environment friendly technique for degrading organic dyes in water. Tungsten oxide is becoming an active area of research in photocatalysis nanomaterials for having a smaller bandgap than the previously favored titanium dioxide. Synthesis of hierarchical structures, doping platinum (Pt), coupling with nanocomposites or other semiconductors are investigated as valid methods of improving the photocatalytic degradation efficiency. These impact the reaction by creating a redshift in the wavelength of light used, effecting charge transfer, and the formation/recombination of electron-hole pairs. Each of the methods mentioned above are investigated in terms of synthesis and photocatalytic efficiency, with the simplest being modification on the morphology of tungsten oxide, since it does not need synthesis of other materials, and the most efficient in photocatalytic degradation being complex coupling of metal oxides and carbon composites. The photocatalysis technology can be incorporated with water purification membrane by modularization process and applied to advanced water treatment system.

Effects of Ethanol Extract of Saussurea lappa on the Growth, Acid Production, Adhesion, and Insoluble Glucan Synthesis of Streptococcus mutans (목향 에탄올 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성 억제에 미치는 영향)

  • Yu Hyeon-Hee;Kim Yeon-Hwa;Lee Jun-Sup;Lee Ki-Hyun;So Hong-Seob;Jeon Byung-Hun;You Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1195-1199
    • /
    • 2005
  • In the present study, Inhibitory effects of the ethanol extract of Saussurea lappa (S. lappa) on the growth, acid production, adhesion and water-insoluble glucan synthesis of Streptouccus mutans (S. mutans) were examined. The growth and acid production of S. mutans were Inhibited by the presence of ethanol extract of S. lappa (0.5-4 mg/ml) significantly. The ethanol extract of S. lappa (0.25-4 mg/ml) also significantly lowered the adherence of S. mutans in a dose dependent manner. In water-insoluble glucan synthesis assay, 2-4 mg/ml of the ethanol extract of S. lappa significantly inhibited the formation of water-insoluble glucan. These results suggest that S. lappa may inhibit the caries-inducing properties of S. mutans. Further studies are necessary to clarify the active constituents of S. lappa responsible for such biomolecular activities.

Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites

  • Dran'kov, Artur;Shichalin, Oleg;Papynov, Evgeniy;Nomerovskii, Alexey;Mayorov, Vitaliy;Pechnikov, Vladimir;Ivanets, Andrei;Buravlev, Igor;Yarusova, Sofiya;Zavjalov, Alexey;Ognev, Aleksey;Balybina, Valeriya;Lembikov, Aleksey;Tananaev, Ivan;Shapkin, Nikolay
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1991-2003
    • /
    • 2022
  • The problem of water contamination by long-living cesium and strontium radionuclides is an urgent environmental issue. The development of facile and efficient technologies based on nanostructured adsorbents is a perspective for selective radionuclides removal. In this regard, current work aimed to obtain the nanostructured magnetic zeolite composites with high adsorption performance to cesium and strontium ions. The optimal conditions of hydrothermal synthesis were established based on XRD, SEM-EDX, N2 adsorption-desorption, VSM, and batch adsorption experiment data. The role of chemical composition, textural characteristics, and surface morphology was demonstrated. The monolayer ionexchange mechanism was proposed based on adsorption isotherm modeling. The highest Langmuir adsorption capacity of 229.6 and 105.1 mg/g towards cesium and strontium ions was reached for composite obtained at 90 ℃ hydrothermal treatment. It was shown that magnetic characteristics of zeolite composites allowing to separate spent adsorbents by a magnet from aqueous solutions.