Browse > Article
http://dx.doi.org/10.1016/j.net.2021.12.010

Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites  

Dran'kov, Artur (Far Eastern Federal University)
Shichalin, Oleg (Far Eastern Federal University)
Papynov, Evgeniy (Far Eastern Federal University)
Nomerovskii, Alexey (Far Eastern Federal University)
Mayorov, Vitaliy (Far Eastern Federal University)
Pechnikov, Vladimir (Far Eastern Federal University)
Ivanets, Andrei (Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus)
Buravlev, Igor (Far Eastern Federal University)
Yarusova, Sofiya (Vladivostok State University of Economics and Service)
Zavjalov, Alexey (Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences)
Ognev, Aleksey (Far Eastern Federal University)
Balybina, Valeriya (Far Eastern Federal University)
Lembikov, Aleksey (Far Eastern Federal University)
Tananaev, Ivan (Far Eastern Federal University)
Shapkin, Nikolay (Far Eastern Federal University)
Publication Information
Nuclear Engineering and Technology / v.54, no.6, 2022 , pp. 1991-2003 More about this Journal
Abstract
The problem of water contamination by long-living cesium and strontium radionuclides is an urgent environmental issue. The development of facile and efficient technologies based on nanostructured adsorbents is a perspective for selective radionuclides removal. In this regard, current work aimed to obtain the nanostructured magnetic zeolite composites with high adsorption performance to cesium and strontium ions. The optimal conditions of hydrothermal synthesis were established based on XRD, SEM-EDX, N2 adsorption-desorption, VSM, and batch adsorption experiment data. The role of chemical composition, textural characteristics, and surface morphology was demonstrated. The monolayer ionexchange mechanism was proposed based on adsorption isotherm modeling. The highest Langmuir adsorption capacity of 229.6 and 105.1 mg/g towards cesium and strontium ions was reached for composite obtained at 90 ℃ hydrothermal treatment. It was shown that magnetic characteristics of zeolite composites allowing to separate spent adsorbents by a magnet from aqueous solutions.
Keywords
Zeolite adsorbents; Magnetic composites; Hydrothermal synthesis; Cesium and strontium radionuclides; Water treatment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T.A. Vereshchagina, S.N. Vereshchagin, N.N. Shishkina, N.G. Vasilieva, L.A. Solovyov, A.G. Anshits, Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr, J. Nucl. Mater. 437 (2013) 11-18, https://doi.org/10.1016/j.jnucmat.2013.01.343.   DOI
2 S. Bahran, M. Ghaedi, R. Tariq, Z. Zalipour, F. Sadeghfar, Fundamental developments in the zeolite process, in: M. Ghaedi (Ed.), Photocatal. Fundam. Process. Appl., Elsevier, 2021, pp. 499-556.
3 G. Cruciani, Zeolites upon heating: factors governing their thermal stability and structural changes, J. Phys. Chem. Solid. 67 (2006) 1973-1994, https://doi.org/10.1016/j.jpcs.2006.05.057.   DOI
4 A. Merceille, E. Weinzaepfel, Y. Barre, A. Grandjean, The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes, Separ. Purif. Technol. 96 (2012) 81-88, https://doi.org/10.1016/j.seppur.2012.05.018.   DOI
5 H.J. Hong, B.G. Kim, J. Ryu, I.S. Park, K.S. Chung, S.M. Lee, J.B. Lee, H.S. Jeong, H. Kim, T. Ryu, Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance, J. Environ. Manag. 205 (2018) 192-200, https://doi.org/10.1016/j.jenvman.2017.09.072.   DOI
6 N.V. Chukanov, A.N. Sapozhnikov, R.Y. Shendrik, M.F. Vigasina, R. Steudel, Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits, Minerals 10 (2020) 1-23, https://doi.org/10.3390/min10111042.   DOI
7 I. Yamagishi, R. Nagaishi, C. Kato, K. Morita, A. Terada, Y. Kamiji, R. Hino, H. Sato, K. Nishihara, Y. Tsubata, S. Tashiro, R. Saito, T. Satoh, J. Nakano, W. Ji, H. Fukushima, S. Sato, M. Denton, Characterization and storage of radioactive zeolite waste, J. Nucl. Sci. Technol. 51 (2014) 1044-1053, https://doi.org/10.1080/00223131.2014.924446.   DOI
8 Y. Yang, T. Wang, Z. Zhang, Z. Ke, C. Shan, X. Cao, L. Ma, S. Peng, A novel method to convert Cs-polluted soil into pollucite-base glass-ceramics for Cs immobilization, Chem. Eng. J. 385 (2020) 123844, https://doi.org/10.1016/j.cej.2019.123844.   DOI
9 H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies, Compt. Rendus Chem. 17 (2014) 108-117, https://doi.org/10.1016/j.crci.2013.02.006.   DOI
10 A.N. Sapozhnikov, V.L. Tauson, S.V. Lipko, R.Y. Shendrik, V.I. Levitskii, L.F. Suvorova, N.V. Chukanov, M.F. Vigasina, On the crystal chemistry of sulfurrich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)-·nH2O, Am. Mineral. 106 (2021) 226-234, https://doi.org/10.2138/am-2020-7317.   DOI
11 H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci. 393 (2013) 445-451, https://doi.org/10.1016/j.jcis.2012.11.010.   DOI
12 A. Palcic, V. Valtchev, Synthesis and application of (nano) zeolites, in: Ref. Modul. Chem. Mol. Sci. Chem. Eng., Elsevier, 2021, https://doi.org/10.1016/B978-0-12-823144-9.00005-4.   DOI
13 N. Lihareva, O. Petrov, L. Dimowa, Y. Tzvetanova, I. Piroeva, F. Ublekov, A. Nikolov, Ion exchange of Cs+ and Sr2+ by natural clinoptilolite from bicationic solutions and XRD control of their structural positioning, J. Radioanal. Nucl. Chem. 323 (2020) 1093-1102, https://doi.org/10.1007/s10967-020-07018-7.   DOI
14 S.R. Kankrej, M.S. Kulkarni, A.V. Borhade, Adsorption isotherms, thermodynamics, kinetics and mechanism for the removal of Ca2+, Mg2+ and Cu2+ ions onto Nosean prepared by using Coal Fly Ash, J. Environ. Chem. Eng. 6 (2018) 2369-2381, https://doi.org/10.1016/j.jece.2017.12.048.   DOI
15 X. Ren, R. Qu, S. Liu, H. Zhao, W. Wu, H. Song, C. Zheng, X. Wu, X. Gao, Synthesis of zeolites from coal fly ash for the removal of harmful gaseous pollutants: a review, Aerosol Air Qual. Res. 20 (2020) 1127-1144, https://doi.org/10.4209/aaqr.2019.12.0651.   DOI
16 S. Behrens, Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions, Nanoscale 3 (2011) 877-892, https://doi.org/10.1039/c0nr00634c.   DOI
17 T.M. Gesing, J.-C. Buhl, Crystal structure of a carbonate-nosean Nas [AlSiO4]6CO3, Eur. J. Mineral 10 (1998) 71-78, https://doi.org/10.1127/ejm/10/1/0071.   DOI
18 J.S. Lee, J.M. Cha, H.Y. Yoon, J.K. Lee, Y.K. Kim, Magnetic multi-granule nano-clusters: a model system that exhibits universal size effect of magnetic coercivity, Sci. Rep. 5 (2015) 1-7, https://doi.org/10.1038/srep12135.   DOI
19 B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008 https://doi.org/10.1002/9780470386323.   DOI
20 M.M. Rahman, S.C. Karmaker, A. Pal, O. Eljamal, B.B. Saha, Statistical techniques for the optimization of cesium removal from aqueous solutions onto iron-based nanoparticle-zeolite composites, Environ. Sci. Pollut. Res. 28 (2021) 12918-12931, https://doi.org/10.1007/s11356-020-11258-1.   DOI
21 J.C. Buhl, Synthesis of a sulfate enclathrated zeolite with intermediate framework structure between sodalite and cancrinite, Zeitschrift Fur Anorg. Und Allg. Chemie. 643 (2017) 1030-1036, https://doi.org/10.1002/zaac.201700101.   DOI
22 V.V. Levenets, A.Y. Lonin, O.P. Omelnik, A.O. Shchur, Comparison the sorption properties of clinoptilolite and synthetic zeolite during sorption strontium from the water solutions in static conditions: sorption and quantitative determination of strontium by the method PIXE, J. Environ. Chem. Eng. 4 (2016) 3961-3966, https://doi.org/10.1016/j.jece.2016.09.011.   DOI
23 E. Han, Y.G. Kim, H.M. Yang, I.H. Yoon, M. Choi, Synergy between zeolite framework and encapsulated sulfur for enhanced ion-exchange selectivity to radioactive cesium, Chem. Mater. 30 (2018) 5777-5785, https://doi.org/10.1021/acs.chemmater.8b02782.   DOI
24 S. Smeets, X. Zou, Zeolite structures, in: J. Cejka, H. Bekkum (Eds.), Stud. Surf. Sci. Catal., Elsevier Ltd., 2005, pp. 37-72, https://doi.org/10.1039/9781788010610-00037.   DOI
25 O.A.A. Moamen, H.A. Ibrahim, N. Abdelmonem, I.M. Ismail, Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite, Microporous Mesoporous Mater. 223 (2016) 187-195, https://doi.org/10.1016/j.micromeso.2015.11.009.   DOI
26 T. Kouznetsova, A. Ivanets, V. Prozorovich, A. Hosseini-Bandegharaei, H.N. Tran, V. Srivastava, M. Sillanpaa, Sorption and mechanism studies of Cu2+, Sr2+ and Pb2+ ions on mesoporous aluminosilicates/zeolite composite sorbents, Water Sci. Technol. 82 (2020) 984-997, https://doi.org/10.2166/wst.2020.407.   DOI
27 M. Jimenez-Reyes, P.T. Almazan-Sanchez, M. Solache-Rios, Radioactive waste treatments by using zeolites. A short review, J. Environ. Radioact. 233 (2021), https://doi.org/10.1016/j.jenvrad.2021.106610.   DOI
28 X. Fan, Y. Jiao, Porous materials for catalysis: toward sustainable synthesis and applications of zeolites, in: G. Szekely, A. Livingston (Eds.), Sustain. Nanoscale Eng. From Mater. Des. to Chem. Process., Elsevier Inc., 2019, pp. 115-137, https://doi.org/10.1016/B978-0-12-814681-1.00005-9.   DOI
29 G.D. Gatta, P. Lotti, Systematics, crystal structures, and occurrences of zeolites, in: M. Mercurio, B. Sarkar, A. Langella (Eds.), Modif. Clay Zeolite Nanocomposite Mater. Environ. Pharm. Appl., Elsevier Inc., 2018, pp. 1-25, https://doi.org/10.1016/B978-0-12-814617-0.00001-3.   DOI
30 S. Belkhiri, M. Guerza, S. Chouikh, Y. Boucheffa, Z. Mekhalif, J. Delhalle, C. Colella, Textural and structural effects of heat treatment and γ-irradiation on Cs-exchanged NaX zeolite, bentonite and their mixtures, Microporous Mesoporous Mater. 161 (2012) 115-122, https://doi.org/10.1016/j.micromeso.2012.05.027.   DOI
31 E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, E.B. Modin, A.S. Portnyagin, I.A. Tkachenko, A.A. Belov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnologies Russ 12 (2017) 49-61, https://doi.org/10.1134/S1995078017010086.   DOI
32 M. Mahima Kumar, K.A. Irshad, H. Jena, Removal of Cs+ and Sr2+ ions from simulated radioactive waste solutions using Zeolite-A synthesized from kaolin and their structural stability at high pressures, Microporous Mesoporous Mater. 312 (2021) 110773, https://doi.org/10.1016/j.micromeso.2020.110773.   DOI
33 A. Kitamura, A. Kirishima, Recent activities in the field of nuclear waste management, J. Nucl. Sci. Technol. 52 (2015) 448-450, https://doi.org/10.1080/00223131.2014.952700.   DOI
34 O.O. Shichalin, E.K. Papynov, V.Y. Maiorov, A.A. Belov, E.B. Modin, I.Y. Buravlev, Y.A. Azarova, A.V. Golub, E.A. Gridasova, A.E. Sukhorada, I.G. Tananaev, V.A. Avramenko, Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides, Radiochemistry 61 (2019) 185-191, https://doi.org/10.1134/S1066362219020097.   DOI
35 L.C.A. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B.C. Pergher, Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water, Water Res. 38 (2004) 3699-3704, https://doi.org/10.1016/j.watres.2004.06.008.   DOI
36 P.S. Gordienko, I.A. Shabalin, S.B. Yarusova, S.B. Bulanova, V.G. Kuryavyi, V.V. Zheleznov, S.N. Somova, I.G. Zhevtun, Sorption of strontium ions on barium silicates from solutions of complex salt composition, Russ. J. Inorg. Chem. 64 (2019) 1579-1586, https://doi.org/10.1134/S0036023619120052.   DOI
37 E.K. Papynov, Spark plasma sintering of ceramic and glass-ceramic matrices for cesium radionuclides immobilization, in: K. Narang (Ed.), Glas. Prop. Appl. Technol., Nova Science Publisher, Inc, New York, 2018, pp. 107-153. https://mail.google.com/mail/u/0/?pli=1%255Cnpapers3://publication/uuid/D84FC782-E317-4880-B951-0697213436E1.
38 S. Kwon, C. Kim, E. Han, H. Lee, H.S. Cho, M. Choi, Relationship between zeolite structure and capture capability for radioactive cesium and strontium, J. Hazard Mater. 408 (2021) 124419, https://doi.org/10.1016/j.jhazmat.2020.124419.   DOI
39 S.R. Kankrej, M.S. Kulkarni, R.P. Patil, A.V. Borhade, Kinetic and thermodynamic studies on adsorption behaviour of rhodamine B dye on nosean synthesised from coal, J. Emerg. Technol. Innov. Res. 5 (2018) 367-379.
40 O. Arar, Application of sorption process for the removal of radioactive elements, in: A. Nunez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut., Elsevier, 2021, pp. 495-512, https://doi.org/10.1016/B978-0-12-820042-1.00020-1.   DOI
41 B. Collum, Nuclear fuel cycle, in: Nucl. Facil., Elsevier Ltd., 2017, pp. 1-44, https://doi.org/10.1016/B978-0-08-101938-2.00001-5.   DOI
42 I. Obodovskiy, Radionuclide sources of ionizing radiation, in: Radiat. Fundam. Appl. Risks, Saf., Elsevier, 2019, pp. 259-273, https://doi.org/10.1016/b978-0-444-63979-0.00017-3.   DOI
43 R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: a review, J. Hazard Mater. 180 (2010) 38-49, https://doi.org/10.1016/j.jhazmat.2010.04.105.   DOI
44 T. Shubair, O. Eljamal, A. Tahara, Y. Sugihara, N. Matsunaga, Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters, J. Mol. Liq. 288 (2019) 111026, https://doi.org/10.1016/j.molliq.2019.111026.   DOI
45 D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-a review, J. Hazard Mater. 344 (2018) 511-530, https://doi.org/10.1016/j.jhazmat.2017.10.047.   DOI
46 O. Eljamal, T. Shubair, A. Tahara, Y. Sugihara, N. Matsunaga, Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions, J. Mol. Liq. 277 (2019) 613-623, https://doi.org/10.1016/j.molliq.2018.12.115.   DOI
47 P. Cappelletti, G. Rapisardo, B. De Gennaro, A. Colella, A. Langella, S. Fabio, D. Lee, M. De Gennaro, Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites, J. Nucl. Mater. 414 (2011) 451-457, https://doi.org/10.1016/j.jnucmat.2011.05.032.   DOI
48 S.B. Yarusova, O.O. Shichalin, A.A. Belov, S.A. Azon, I.Y. Buravlev, A.V. Golub, V.Y. Mayorov, A.V. Gerasimenko, E.K. Papynov, A.I. Ivanets, A.A. Buravleva, E.B. Merkulov, V.A. Nepomnyushchaya, O.V. Kapustina, P.S. Gordienko, Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique, Ceram. Int. (2021), https://doi.org/10.1016/j.ceramint.2021.10.164.   DOI
49 E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, V.G. Kuryavyi, T.A. Kaidalova, SPS technique for ionizing radiation source fabrication based on dense cesium-containing core, J. Hazard Mater. 369 (2019) 25-30, https://doi.org/10.1016/j.jhazmat.2019.02.016.   DOI
50 C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of Classi$cation of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (1960) 3973-3993.
51 A.B. Bourlinos, R. Zboril, D. Petridis, A simple route towards magnetically modified zeolites, Microporous Mesoporous Mater. 58 (2003) 155-162, https://doi.org/10.1016/S1387-1811(02)00613-3.   DOI
52 O. Falyouna, O. Eljamal, I. Maamoun, A. Tahara, Y. Sugihara, Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system, J. Colloid Interface Sci. 571 (2020) 66-79, https://doi.org/10.1016/j.jcis.2020.03.028.   DOI
53 O. Evrard, J.P. Laceby, H. Lepage, Y. Onda, O. Cerdan, S. Ayrault, Radiocesium transfer from hillslopes to the Pacific ocean after the Fukushima nuclear power plant accident: a review, J. Environ. Radioact. 148 (2015) 92-110, https://doi.org/10.1016/j.jenvrad.2015.06.018.   DOI
54 V.A. Avramenko, A.M. Egorin, E.K. Papynov, T.A. Sokol'nitskaya, I.G. Tananaev, V.I. Sergienko, Processes for treatment of liquid radioactive waste containing seawater, Radiochemistry 59 (2017), https://doi.org/10.1134/S1066362217040142.   DOI