• Title/Summary/Keyword: Synchronous switching method

Search Result 100, Processing Time 0.026 seconds

A Study about The Hot-Swap Function for Prevention of Trouble in PLC Power Supplies (PLC 전원공급장치의 고장 방지를 위한 HOT-SWAP 기술에 관한 연구)

  • Park, Jong-Jin;Lee, Jong-Jae;Kwon, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.237-239
    • /
    • 2005
  • In this paper PLC Power Circuit with Hot-Swap Function is proposed for stable power supplies. The power modules of the proposed devices are implemented by CRM flyback converter using new synchronous rectifier circuit for high efficiency. By a variable switching frequency controller, this converter is operated with a reduced turn-on switching loss. Also, the load current in these power modules are shared by auto master / slave method using Outer loop. The proposed devices are analyzed in detail and optimized for high performance. Experimental results for a 100W power module at the variable switching frequency of 30$^{\sim}$70kHz were obtained to show the performance of the proposed device.

  • PDF

SDH network conversion system design for wireless transmission (무선 전송을 위한 SDH 네트워크 연동장치 설계)

  • Park, Chang-Soo;Kim, Jong-Hyoun;Yoo, Ji-Ho;Yoon, Byung-Su;Kim, Su-Hwan;Byun, Hyun-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.461-463
    • /
    • 2018
  • In this paper, we have studied the devices needed for long distance wireless transmission of SDH network. This devices propose wireless transmission and measurement method of STM-1(basic transmission unit of SDH method) signal and 200Mbps synchronous ethernet. The synchronous clock recovery function is provided for STM-N transmission and synchronous ethernet transmission, and spare clock switching function is designed for stable synchronization. In addition, we discussed the measurement method of STM-N and synchronous Etherent communication method in wireless transmission section.

  • PDF

Fast FCS-MPC-Based SVPWM Method to Reduce Switching States of Multilevel Cascaded H-Bridge STATCOMs

  • Wang, Xiuqin;Zhao, Jiwen;Wang, Qunjing;Li, Guoli;Zhang, Maosong
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.244-253
    • /
    • 2019
  • Finite control set model-predictive control (FCS-MPC) has received increasing attentions due to its outstanding dynamic performance. It is being widely used in power converters and multilevel inverters. However, FCS-MPC requires a lot of calculations, especially for multilevel-cascaded H-bridge (CHB) static synchronous compensators (STATCOMs), since it has to take account of all the feasible voltage vectors of inverters. Hence, an improved five-segment space vector pulse width modulation (SVPWM) method based on the non-orthogonal static reference frames is proposed. The proposed SVPWM method has a lower number of switching states and requires fewer computations than the conventional method. As a result, it makes FCS-MPC more efficient for multilevel cascaded H-bridge STATCOMs. The partial cost function is adopted to sequentially solve for the reference current and capacitor voltage. The proposed FCS-MPC method can reduce the calculation burden of the FCS-MPC strategy, and reduce both the switching frequency and power losses. Simulation and experimental results validate the excellent performance of the proposed method when compared with the conventional approach.

A Novel Dead-Time Compensation Method using Disturbance Observer

  • Youn, Myung-Joong;Moon, Hyung-Tae;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • A new on-line dead-time compensation method for a permanent magnet (PM) synchronous motor drive is proposed. Using a simple disturbance observer without any additional circuit and off-line experimental measurement, disturbance voltages in the synchronous reference dq frame caused by the dead time and non-ideal switching characteristics of power devices are estimated in an on-line manner and fed to voltage references in order to compensate the dead-time effects. The proposed method is applied to a PM synchronous motor drive system and implemented by using software of a digital signal processor (DSP) TMS320C31. Simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of the proposed method.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

A Study on Efficiency of Active Clamp Type Forward DC-DC Converter (능동 클램프형 포워드 DC-DC 컨버터의 효율에 관한 연구)

  • 안태영
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.351-357
    • /
    • 2004
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for switching power supplies. In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the switching power supply that includes all the parasitic resistances of the circuit components. While the winding losses and core losses are accurately accounted for the magnetic components, the skin and proximity effects are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype active-clamped forward converter with synchronous rectification. An excellent correlation between the experiments and theories are obtained for the input voltages of 36-75 V with 4-6 MOSFETs employed for the synchronous rectification.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

Improvement of Dynamic Response for IPMSM based on DTC-CFTC Using Sliding Mode Control (일정 스위칭 주파수를 가지는 DTC 기반 IPMSM의 슬라이딩 모드 제어를 이용한 속응성 향상)

  • Han, Byeol;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.628-635
    • /
    • 2019
  • This paper proposes sliding mode control (SMC) method for improvement of dynamic response for IPMSM based on DTC with constant switching frequency. DTC with constant switching frequency method consists of PI torque controller and triangular comparator for constant torque error status. It has the poor dynamic response compared to conventional DTC. This paper proposes improvement method of dynamic response of DTC with constant switching frequency by using SMC. Simulation results confirm the effectiveness of the proposed method.

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.