• Title/Summary/Keyword: Synchronous buck converter

Search Result 61, Processing Time 0.026 seconds

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.

Parallel Control of Synchronous Buck Converter Using DSP (DSP를 이용한 Synchronous Buck Converter의 병렬 제어)

  • Kim Jeong-Hoon;Lim Jeong-Gyu;Shin Hwi-Beom;Chung Se-Kyo;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.140-142
    • /
    • 2006
  • This paper represents a digital parallel control of a synchronous buck converter using a digital signal processor (DSP). The digital PWM and load sharing controller is implemented in the DSP TMS320F2812 and the experimental results are provided to show the feasibility of the digital synchronous buck regulator.

  • PDF

A Zero-Current-Transition Synchronous Buck Converter Using Auxiliary Circuit with Soft-Switching (소프트 스위칭 방식의 보조 회로를 활용한 영전류 천이형 싱크로너스 벅 컨버터)

  • Lee, Eui-Cheon;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2013
  • This paper proposes a zero-current-transition(ZCT) synchronous buck converter using auxiliary circuit with soft-switching for light weight and high efficiency. In this scheme, an auxiliary circuit is added to the conventional synchronous rectifier buck converter and used to achieve soft-switching condition for both the main switch and synchronous switch. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Thus, the proposed converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200KHz, 20 W prototype converter.

LLC Resonant and Synchronous Buck Converter Based High Efficiency Battery Charger for Energy Storage Systems (에너지 저장 시스템을 위한 LLC/동기 벅컨버터 기반 고효율 배터리 충방전기 설계)

  • Lee, Taeyeong;Lee, Il-Oun;Cho, Younghoon;Kim, Hangoo;Cho, Junseok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.15-16
    • /
    • 2016
  • This paper proposes an isolated DCDC converter that consists of unregulated LLC resonant converter and non-isolated synchronous buck converter for battery charger of energy storage systems application. The unregulated converter operates as transformer with fixed duty ratio and switching frequency. The synchronous buck converter is installed in the output of the LLC resonant converter. And the converter charges and discharges the battery by controlling a current of battery. The proposed converter can get the high efficiency by separating function. This paper explains design of an unregulated converter and synchronous converter.

  • PDF

High Efficiency 5A Synchronous DC-DC Buck Converter (고효율 5A용 동기식 DC-DC Buck 컨버터)

  • Hwang, In Hwan;Lee, In Soo;Kim, Kwang Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.352-359
    • /
    • 2016
  • This paper presents high efficiency 5A synchronous DC-DC buck converter. The proposed DC-DC buck converter works from 4.5V to 18V input voltage range, and provides up to 5A of continuous output current and output voltage adjustable down to 0.8V. This chip is packaged MCP(multi-chip package) with control chip, top side P-CH switch, and bottom side N-CH switch. This chip is designed in a 25V high voltage CMOS 0.35um technology. It has a maximum power efficiency of up to 94% and internal 3msec soft start and fixed 500KHz PWM(Pulse Width Modulation) operations. It also includes cycle by cycle current limit function, short and thermal shutdown protection circuit at 150℃. This chip size is 2190um*1130um includes scribe lane 10um.

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

Zero-Voltage-Transition Synchronous DC-DC Converters with Coupled Inductors

  • Rahimi, Akbar;Mohammadi, Mohammad Reza
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.74-83
    • /
    • 2016
  • A new family of zero-voltage-transition converters with synchronous rectification is introduced in this study. Soft switching condition for all the converter operating points is provided in the proposed converters. The reverse recovery losses of the rectifier switch body diode are also eliminated. In comparison with the main switch voltage stress, the auxiliary switch voltage stress is reduced significantly. The auxiliary switch does not need the floating gate drive. The auxiliary inductor is coupled with the main converter inductor, and the leakage inductor is used as the resonance inductor. Thus, all inductors of the proposed converter can be implemented on a single core. The other features of the proposed converters include no extra voltage and current stresses on the main converter semiconductor elements. Theoretical analysis for a synchronous buck converter is presented in detail, and the validity of the theoretical analysis is justified with the experimental results of a prototype buck converter with 180 W and 80 V to 30 V.

Zero-Voltage-Transition Buck Converter for High Step-Down DC-DC Conversion with Low EMI

  • Ariyan, Ali;Yazdani, Mohammad Rouhollah
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this study, a new zero-voltage transition (ZVT) buck converter with coupled inductor using a synchronous rectifier and a lossless clamp circuit is proposed. The regular buck converter with tapped inductor has extended duty cycle for high step-down applications. However, the leakage inductance of the coupled inductor produced considerable voltage spikes across the switch. A lossless clamp circuit is used in the proposed converter to overcome this problem. The freewheeling diode was replaced with a synchronous rectifier to reduce conduction losses in the proposed converter. ZVT conditions at turn-on and turn-off instants were provided for the main switch. The synchronous rectifier switch turned on under zero-voltage switching, and the auxiliary switch turn-on and turn-off were under zero-current condition. Experimental results of a 100 W-100 kHz prototype are provided to justify the validity of the theoretical analysis. Moreover, the conducted electromagnetic interference of the proposed converter is measured and compared with its hard-switching counterpart.

Soft-Switched Synchronous Buck Converter for Battery Chargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2019
  • In this paper, we proposed a soft-switched synchronous buck converter, which can perform charging the battery. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss, resulting in small conduction loss, also. In this reason, the efficiency of the converter can be greatly improved even in high frequency. The size and weight of the converter can be reduced by high frequency operation of the converter. In this paper, we designed a battery charger with a switching frequency of 100 kHz. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery charger had soft switching characteristics. The simulation results for transient response to charge current for the designed converter show that the converter responds to charge current commands quickly within 0.05 ms.

Passive Current Sharing Characteristics of Multi-Phase Synchronous Buck Converter (다상 동기 벅 컨버터의 Passive Current Sharing 특성)

  • Kim, Jeong-Hoon;Cho, Kyung-Sig;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.175-177
    • /
    • 2007
  • An analysis on a passive current sharing characteristics of a multi-phase synchronous buck converter is presented. The passive current sharing method is simple but its characteristics depend on the converter equivalent resistance and PWM uniformity. In this paper, the load sharing and power consumption of the passive current sharing system for the converter equivalent resistance and duty ratio inequalities are investigated through the simulation and experiment.

  • PDF