• Title/Summary/Keyword: Symmetric condition

Search Result 279, Processing Time 0.027 seconds

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Free Vibrations of Horseshoe Symmetric Elliptic Arch: Using Boundary Conditions of Stress Resultants at Mid-Arc Revisited (마제형 대칭 타원 아치의 자유진동: 아치 정점의 합응력 경계조건 이용 재고(再考))

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Gweon Sik;Oh, Sang Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.191-200
    • /
    • 2021
  • This paper deals with the boundary conditions of the stress resultants at the mid-arc for free vibration analyses of the arch. The considered arch is a horseshoe symmetric elliptic arch. The work dealing with the boundary conditions of the deflection at both ends of the arch has already been reported in the open literature. This revisited paper aims to study the suitability of the boundary conditions of the stress resultants at the mid-arc to be replaced by the boundary condition at both ends. In this study, the boundary conditions of the stress resultants at the mid-arc are newly derived based on the theory of the previous work, and natural frequencies and mode shapes are obtained using the new boundary conditions of the stress resultants. The numerical results of this paper confirm that the new boundary conditions have been validated according to previous studies and results of finite element ADINA.

Experimental Study on Global Buckling of Singly Symmetric FRP Members (일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구)

  • Lee, Seungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.99-106
    • /
    • 2006
  • Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

Numerical Simulation of the Flows and Breaking Phenomena for the Design for High Speed Vessels (고속선 설계를 위한 유동계산 및 쇄파현상)

  • 박명규;곽승현
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.3
    • /
    • pp.85-92
    • /
    • 1993
  • In connection to the design of high speed vessels, the numerical simulation is carried out to make clear the property of flows and breaking phenomena around the catamaran. It is because the bradking phenome-non is closely related to the free-surface turbulent flow. The free-surface wave and transverse velocity vectors are calculated around the twin and demi hull of the catamaran. Computed results are applied to detect the appearance of sub-breaking waves around the hull. The critical condition for their appearance is studied at two Froude numbers of 0.45 and 0.95. The nu-merical analysis shows that the breaking is more serious near the twin hull rather the demi hull. To simu-late the flows, the Navier-Stokes solver is invoked with a free-surface. The computation is made only in half a domain because it is symmetric in the shape.

  • PDF

Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates

  • Loghman, Abbas;Arani, Ali Ghorbanpour;Barzoki, Ali Akbar Mosallaie
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.677-687
    • /
    • 2017
  • The nonlinear buckling response of nano composite anti-symmetric functionally graded polymeric microplate reinforced by single-walled carbon nanotubes (SWCNTs) rested on orthotropic elastomeric foundation with temperature dependent properties is investigated. For the carbon-nanotube reinforced composite (CNTRC) microplate, a uniform distribution (UD) and four types of functionally graded (FG) distribution are considered. Based on orthotropic Mindlin plate theory, von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is employed to calculate the non-linear buckling response of the plate. Effects of FG distribution type, elastomeric foundation, aspect ratio (thickness to width ratio), boundary condition, orientation of foundation orthotropy and temperature are considered. The results are validated. It is found that the critical buckling load without elastic medium is significantly lower than considering Winkler and Pasternak medium.

A Study of The Voltage Transfer Function Dependent On Input Conditions For An N-Input NAND Gate (N-Input NAND Gate에서 입력조건에 따른 Voltage Transfer Function에 관한 연구)

  • Kim In-Mo;Song Sang-Hun;Kim Soo-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.510-514
    • /
    • 2004
  • In this paper, we analytically examine the voltage transfer function dependent on input conditions for an N-Input NAND Gate. The logic threshold voltage, defined as a voltage at which the input and the output voltage become equal, changes as the input condition changes for a static NAND Gate. The logic threshold voltage has the highest value when all the N-inputs undergo transitions and it has the lowest value when only the last input connected to the last NMOS to ground, makes a transition. This logic threshold voltage difference increases as the number of inputs increases. Therefore, in order to provide a near symmetric voltage transfer function, a multistage N-Input Gate consisting of 2-Input Logic Gates is desirable over a conventional N-Input Gate.

Performance and parameter region for real time use in IEEE 802.4 token bus network

  • Park, Hong-Seong;Kim, Deok-Woo;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1805-1810
    • /
    • 1991
  • This paper derives the upper and the lower bound of the mean cycle time and the mean service time of the class 6 and the class 4, within which the minimum utilization constrain of the class 4 is guaranteed. Also, derived are conditions under which the token bus network is stable or unstable. These bounds and stable conditions are represented in terms of the high priority token hold time, the token rotation time and the arrival rate and the total station number etc. This paper suggest a parameter tuning algorithm in a partially symmetric token bus network with two classes, which maximizes the token rotation time for a suitable high priority token hold time and at the same time meets the stability condition of the network, the real time constraint and the minimum utilization constraint of the class 4.

  • PDF

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Experimental Investigation on the Equivalent Ring Theory of the Beat (맥놀이의 등가 링 이론에 관한 실험적 검토)

  • Kim, S.H.;Cui, C.X.;Park, H.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1218-1223
    • /
    • 2007
  • In this study, we experimentally investigate the equivalent ring theory for a slightly asymmetric ring. The slightly asymmetric ring has mode pair and frequency pair due to the small asymmetry and this mode pair generates beat in vibration and sound. In this paper, a slightly asymmetric ring is modeled as the equivalent ring, i.e., the assemblage of a symmetric ring and imperfect point masses. The equivalent ring has the same mode pair condition as that of the original asymmetric ring. Effect of the additional mass attachment is investigated by the equivalent ring theory and the result is compared with those of the measurement and the finite element analysis. It is confirmed that the original ring and the equivalent ring show the same change in frequency and mode under the various additional imperfection mass conditions. The equivalent ring theory explains how the asymmetric elements influence the mode characteristics and provides useful information to tune the beat property.

  • PDF

Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 원통셸의 진동해석)

  • Park, Sang-Yun;Kim, Sung-Kyun;Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.791-799
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Structural model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations(Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence are investigated and pertinent conclusions are derived.