• Title/Summary/Keyword: Symmetric Key Algorithm

Search Result 116, Processing Time 0.025 seconds

An Implementation of Authentication and Encryption of Multimedia Conference using H.235 Protocol (H.235 프로토콜에 의한 영상회의의 인증과 암호화 구현)

  • Sim, Gyu-Bok;Lee, Keon-Bae;Seong, Dong-Su
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.343-350
    • /
    • 2002
  • This paper describes the implementation of H.235 protocol for authentication and media stream encryption of multimedia conference systems. H.235 protocol is recommended by ITU-T for H.323 multimedia conference security protocol to prevent from being eavesdropped and modified by an illegal attacker. The implementation in this paper has used password-based with symmetric encryption authentication. Media streams are encrypted using the Diffie-Hellman key exchange algorithm and symmetric encryption algorithms such as RC2, DES and Triple-DES. Also, 128-bit Advanced Encryption Standard and 128-bit Korean standard SEED algorithms are implemented for the future extension. The implemented authentication and media stream encryption has shown that it is possible to identify terminal users without exposing personal information on networks and to preserve security of multimedia conference. Also, encryption delay time and used memory are not increased even though supporting media stream encryption/decryption, thus the performance of multimedia conference system has not deteriorated.

Optimization of LEA Quantum Circuits to Apply Grover's Algorithm (그루버 알고리즘 적용을 위한 LEA 양자 회로 최적화)

  • Jang, Kyung Bae;Kim, Hyun Jun;Park, Jae Hoon;Song, Gyeung Ju;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2021
  • Quantum algorithms and quantum computers can break the security of many of the ciphers we currently use. If Grover's algorithm is applied to a symmetric key cipher with n-bit security level, the security level can be lowered to (n/2)-bit. In order to apply Grover's algorithm, it is most important to optimize the target cipher as a quantum circuit because the symmetric key cipher must be implemented as a quantum circuit in the oracle function. Accordingly, researches on implementing AES(Advanced Encryption Standard) or lightweight block ciphers as quantum circuits have been actively conducted in recent years. In this paper, korean lightweight block cipher LEA was optimized and implemented as a quantum circuit. Compared to the previous LEA quantum circuit implementation, quantum gates were used more, but qubits were drastically reduced, and performance evaluation was performed for this tradeoff problem. Finally, we evaluated quantum resources for applying Grover's algorithm to the proposed LEA implementation.

Design and Implementation of EAI(Enterprise Application Integration) System for Privacy Information (개인정보 보호를 위한 EAI 시스템 설계 및 구현)

  • Kim, Yong Deok;Jun, Moon Seog
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • This paper describes the design and implementation of the PKI-based EAI system which is used for delivery of sensitive personal information between business systems. For this purpose, we propose a key exchange protocol with some key process : Diffie-Hellman Schema is used to provide forward secrecy, public key-based digital signature is used for EAI Server authentication, data integrity. In addition, in order to minimize the performance impact on the overall EAI systems. The EAI server was designed simply to be used only as a gateway. This paper shows the implementation of Korea public key authentication algorithm standard and a symmetric encryption algorithm for data encryption.

A SPECK Crypto-Core Supporting Eight Block/Key Sizes (8가지 블록/키 크기를 지원하는 SPECK 암호 코어)

  • Yang, Hyeon-Jun;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.468-474
    • /
    • 2020
  • This paper describes the hardware implementation of SPECK, a lightweight block cipher algorithm developed for the security of applications with limited resources such as IoT and wireless sensor networks. The block cipher SPECK crypto-core supports 8 block/key sizes, and the internal data-path was designed with 16-bit for small gate counts. The final round key to be used for decryption is pre-generated through the key initialization process and stored with the initial key, enabling the encryption/decryption for consecutive blocks. It was also designed to process round operations and key scheduling independently to increase throughput. The hardware operation of the SPECK crypto-core was validated through FPGA verification, and it was implemented with 1,503 slices on the Virtex-5 FPGA device, and the maximum operating frequency was estimated to be 98 MHz. When it was synthesized with a 180 nm process, the maximum operating frequency was estimated to be 163 MHz, and the estimated throughput was in the range of 154 ~ 238 Mbps depending on the block/key sizes.

A Study on the Authentication Protocols Fitted for Smart Cards (스마트 카드에 적합한 인증 프로토콜에 관한 연구)

  • 이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.9-14
    • /
    • 1999
  • The authentication technique, which uses public key cryptographic algorithms, proves itself by generating authentication value through secret keys and gives verification by means of public keys .This paper is believed to 1) solve the problem of distribution and management of secret keys, which still remain the problem of authentication used in symmetric cryptographic algorithm. 2) provide the method to receive a certificate of handling the problems of public key lists through the authentication authority. and finally 3) suggest an algorithm which will enable us to run the public keys more effectively.

  • PDF

A Study on the Design of a Secure Client-Sever System (Secure 클라이언트-서버 시스템 설계에 관한 연구)

  • 이상렬
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.91-96
    • /
    • 1998
  • In this paper we designed a secure client-server system to be able to protect messages between client and server using cryptography We authenticated each other using a asymmetric encryption algorithm on the logon procedure and minimized the time to encrypt and decrypt messages using a symmetric encryption algorithm on exchanging messages. We proved that it is possible to make a digital signature on our secure client-server system. And we suggested the efficient key management method to generate and distribute cryptograpic key securely.

  • PDF

Identity-Based Key Management Scheme for Smart Grid over Lattice

  • Wangke, Yu;Shuhua, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.74-96
    • /
    • 2023
  • At present, the smart grid has become one of the indispensable infrastructures in people's lives. As a commonly used communication method, wireless communication is gradually, being widely used in smart grid systems due to its convenient deployment and wide range of serious challenges to security. For the insecurity of the schemes based on large integer factorization and discrete logarithm problem in the quantum environment, an identity-based key management scheme for smart grid over lattice is proposed. To assure the communication security, through constructing intra-cluster and inter-cluster multi-hop routing secure mechanism. The time parameter and identity information are introduced in the relying phase. Through using the symmetric cryptography algorithm to encrypt improve communication efficiency. Through output the authentication information with probability, the protocol makes the private key of the certification body no relation with the distribution of authentication information. Theoretic studies and figures show that the efficiency of keys can be authenticated, so the number of attacks, including masquerade, reply and message manipulation attacks can be resisted. The new scheme can not only increase the security, but also decrease the communication energy consumption.

A Study on AES-based Mutual Authentication Protocol for IoT Devices (사물인터넷 디바이스를 위한 AES 기반 상호인증 프로토콜)

  • Oh, Se-Jin;Lee, Seung-Woo
    • Journal of Industrial Convergence
    • /
    • v.18 no.5
    • /
    • pp.23-29
    • /
    • 2020
  • The Internet of things (IoT) is the extension of Internet connectivity into various devices and everyday objects. Embedded with electronics, Internet connectivity and other forms of hardware. The IoT poses significant risk to the entire digital ecosystem. This is because so many of these devices are designed without a built-in security system to keep them from being hijacked by hackers. This paper proposed a mutual authentication protocol for IoT Devices using symmetric-key algorithm. The proposed protocol use symmetric key cryptographic algorithm to securely encrypt data on radio channel. In addition, the secret key used for encryption is random number of devices that improves security by using variable secret keys. The proposed protocol blocked attacker and enabled legal deives to communicate because only authenticated devices transmit data by a mutual authentication protocol. Finally, our scheme is safe for attacks such as eavesdropping attack, location tracking, replay attack, spoofing attack and denial of service attack and we confirmed the safety by attack scenario.

A Study on NTRUSign security to prevent script attacks (스크립트 공격을 막기 위한 NTRUSign 보안 연구)

  • Bae, Sung-Hyun;Jeong, Jong-hyeog
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.200-206
    • /
    • 2019
  • Recently, there is a growing preference for a fast and secure cryptographic protocol that is applicable to Internet of things environments. Among the lattice-based cryptographic algorithms, the NTRU cryptosystem is secure by virtue of the shortest vector problem (SVP) and the closest problem(CVP), which is a problem of finding very short vectors and closest vector. NTRUSign, an electronic signature based on this cryptographic algorithm, has been proposed and proved unsafe for script attacks. In this paper, we propose a security protocol using a symmetric key algorithm by securing a shared key using key exchange. Therefore, the attacker can not compute the key value and intends to propose a more secure digital signature.

A Study on Encryption Method using Hash Chain and Session Key Exchange in DRM System (DRM 시스템에서 해쉬체인과 세션키 교환을 이용한 암호화 기법에 관한 연구)

  • Park, Chan-Kil;Kim, Jung-Jae;Lee, Kyung-Seok;Jun, Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.843-850
    • /
    • 2006
  • This is devoted to first, to propose a hash chain algorithm that generates more secure key than conventional encryption method. Secondly, we proposes encryption method that is more secure than conventional system using a encryption method that encrypts each block with each key generated by a hash chain algorithm. Thirdly, After identifying the user via wired and wireless network using a user authentication method. We propose a divided session key method so that Although a client key is disclosed, Attackers cannot catch a complete key and method to safely transfer the key using a divided key method. We make an experiment using various size of digital contents files for performance analysis after performing the design and implementation of system. Proposed system can distribute key securely than conventional system and encrypt data to prevent attacker from decrypting complete data although key may be disclosed. The encryption and decryption time that client system takes to replay video data fie is analogous to the conventional method.