• Title/Summary/Keyword: Symbolic computation

Search Result 29, Processing Time 0.028 seconds

Applications of Maple package in Education of Mathematics for Statistics

  • Jang, Dae-Heung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.103-115
    • /
    • 2005
  • Mathematical packages have the advantages of symbolic computation and powerful graphics interface in contrast with statistical packages. We can use mathematical packages as a support tool in education of mathematics for statistics.

  • PDF

통계학 과목 교수 시 수학패키지의 활용에 대한 소고(小考)

  • Jang, Dae-Heung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.235-237
    • /
    • 2002
  • 통계학 과목 교수 시 보조 수단으로 자주 사용하는 것이 통계패키지이다 이러한 통계패키지 외에 수학패키지를 통계학 과목 수업에 활용하면 학습효과를 높이는 데 효과적일 것이다.

  • PDF

Closed form ultimate strength of multi-rectangle reinforced concrete sections under axial load and biaxial bending

  • da Silva, V. Dias;Barros, M.H.F.M.;Julio, E.N.B.S.;Ferreira, C.C.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.505-521
    • /
    • 2009
  • The analysis of prismatic members made of reinforced concrete under inclined bending, especially the computation of ultimate loads, is a pronounced non-linear problem which is frequently solved by discretizing the stress distribution in the cross-section using interpolation functions. In the approach described in the present contribution the exact analytical stress distribution is used instead. The obtained expressions are integrated by means of a symbolic manipulation package and automatically converted to optimized Fortran code. The direct problem-computation of ultimate internal forces given the position of the neutral axis-is first described. Subsequently, two kinds of inverse problem are treated: the computation of rupture envelops and the dimensioning of reinforcement, given design internal forces. An iterative Newton-Raphson procedure is used. Examples are presented.

COMPLETELY INTEGRABLE COUPLED POTENTIAL KDV EQUATIONS

  • Wazwaz, Abdul-Majid
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.847-858
    • /
    • 2011
  • We make use of the simplified Hirota's bilinear method with computer symbolic computation to study a variety of coupled potential KdV (pKdV) equations. Each coupled equation is completely integrable and gives multiple soliton solutions and multiple singular soliton solutions. The phase shifts for all coupled pKdV equations are identical whereas the coefficients of the obtained solitons are not identical. The four coupled pKdV equations are resonance free.

Efficient Computations for Evaluating Extended Stochastic Petri Nets using Algebraic Operations

  • Kim, Dong-Sung;Moon, Hong-Ju;Bahk, Je-Hyeong;Kwon, Wook-Hyun;Zygmunt J. Haas
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.431-443
    • /
    • 2003
  • This paper presents an efficient method to evaluate the performance of an extended stochastic Petri net by simple algebraic operations. The reachability graph is derived from an extended stochastic Petri net, and then converted to a timed stochastic state machine, using a semi-Markov process. The n-th moments of the performance index are derived by algebraic manipulations with each of the n-th moments of transition time and transition probability. For the derivation, three reduction rules are introduced on the transition trajectories in a well-formed regular expression. Efficient computation algorithms are provided to automate the suggested method. The presented method provides a proficient means to derive both the numerical and the symbolic solutions for the performance of an extended stochastic Petri net by simple algebraic manipulations.

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

An Action Research on the Teaching Fraction Computation Using Semi-concrete Fraction Manipulatives (분수교구를 활용한 분수연산지도 실행연구)

  • Jin, Kyeong-oh;Kwon, Sung-yong
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.4
    • /
    • pp.307-332
    • /
    • 2022
  • This action research was carried out to help students learn fractions computation by making and using semi-concrete fraction manipulatives that can be used continuously in math classes. For this purpose, the researcher and students made semi-concrete fraction manipulatives and learned how to use these through reviewing the previously learned fraction contents over 4 class sessions. Afterward, through the 14 classes (7 classes for learning to reduce fractions and to a common denominator, 7 classes for adding and subtracting fractions with different denominators) in which the principle inquiry learning model was applied, students actively engaged in learning activities with fraction manipulatives and explored the principles underneath the manipulations of fraction manipulatives. Students could represent various fractions using fraction manipulatives and solve fraction computation problems using them. The achievement evaluation after class found that the students could connect the semi-concrete fraction manipulatives with fraction representation and symbolic formulas. Moreover, the students showed interest and confidence in mathematics through the classes using fraction manipulatives.

De Morgan's view on the development of algebra (대수 발달의 단계에 관한 드모르간의 관점 연구)

  • Yu, Mi-Kyung;Kim, Jae-Hong;Kwon, Seok-Il;Park, Sun-Yong;Choi, Ji-Sun;Park, Kyo-Sik
    • Journal for History of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.61-78
    • /
    • 2008
  • In this paper, we discuss about De Morgan's view on the development of algebra according to following distinctions: arithmetic, universal arithmetic, symbolic algebra, significant algebra. De Morgan thought that the differences between arithmetic and universal arithmetic lie in the usage of letters and the immediate performance of computation. In his viewpoint, universal arithmetic is a transitional phase, in which absurd phenomena occur, from arithmetic to algebra and these absurd phenomena call for algebra. The feature of De Morgan's view on the development of algebra is that symbolic calculus which consist of symbol system without symbol's meaning is acquired, then as extended meanings are furnished to symbols, symbolic calculus become logical so significant calculus is developed. For example, Single algebra is developed, as an extended meaning is furnished to a symbol -1, and double algebra is developed, as an extended meaning is furnished to a symbol $\sqrt{-1}$. According to De Morgan, a symbol system is derived from the incompleteness of a prior symbol system.

  • PDF

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.

Development of a Real-Time Vehicle Dynamic Model for a Tracked Vehicle Driving Simulator

  • Lee, Ji-Young;Lee, Woon-Sung;Lee, Ji-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.115.2-115
    • /
    • 2002
  • A real-time vehicle simulation system is a key element of a driving simulator because accurate prediction of vehicle motion with respect to driver input is required to generate realistic visual, motion, sound and proprioceptive cues. In order to predict vehicle motion caused by various driving actions of the driver on board the simulator, the vehicle model should consist of complete subsystems. On this paper, a tracked vehicle dynamic model with high efficiency and effectiveness is introduced that has been implemented on a training driving simulator. The multi-body vehicle model is based on recursive formulation and has been automatically generated from a symbolic computation package develop...

  • PDF